RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Effect of stress-strain curve changing with equal channel angular pressing on ultimate strength of ship hull stiffened panels

        Dursun Murat Sekban,Hasan Olmez 국제구조공학회 2021 Structural Engineering and Mechanics, An Int'l Jou Vol.78 No.4

        Similar to other structures, ultimate strength values showing the maximum load that the structure can resist without damaging has great importance on ships. Therefore, increasing the ultimate strength values will be an important benefit for the structure. Low carbon steels used in ships due to their low cost and good weldability. Improving the ultimate strength values without interfering with the chemical composition to prevent of the weldability properties of these steels would be very beneficial for ships. Grain refinement via severe plastic deformation (SPD) is an essential strengthening mechanism without changing the chemical composition of metallic materials. Among SPD methods, equal channel angular pressing (ECAP) is one of the most commonly used one due to its capacity for achieving bulk ultrafine-grained (UFG) materials. When the literature is examined, it is seen that there is no study about ultimate strength calculation in ships after ECAP. Therefore, the mean purpose of this study is to apply ECAP to a shipbuilding low carbon steel to be able to achieve mechanical properties and investigate the alteration of ship hull girder grillage system’s ultimate strength via finite element analysis approach. A fine-grained (FG) microstructure with a mean grain size of 6 μm (initial grain size was 25 μm) was after ECAP. This microstructural evolution brought about a considerable increase in strength values. Both yield and tensile strength values increased from 280 MPa and 425 MPa to about 420 MPa and 785 MPa, respectively. This improvement in the strength values reflected a finite element method to determine the ultimate strength of ship hull girder grillage system. As a result of calculations, it was reached significantly higher ultimate strength values (237,876 MPa) compared the non-processed situation (192,986 MPa) on ship hull girder grillage system.

      • The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch

        Murat Yaylacı,Merve Abanoz,Ecren Uzun Yaylacı,Hasan Ölmez,Dursun Murat Sekban,Ahmet Birinci 국제구조공학회 2022 Steel and Composite Structures, An International J Vol.43 No.5

        The solution of contact problems is extremely important as we encounter many situations involving such problems in our daily lives. One of the most important parameters effective in solving contact problems is the materials of the parts in contact. While it is relatively easy to solve the contact mechanics of the systems created with traditional materials with a homogeneous microstructure and mechanical distribution, it may be more difficult to solve the contact problem of new generation materials that do not show a homogeneous distribution. As a result of this situation, it is seen that studies on contact problems of materials that do not exhibit such a homogeneous internal structure and mechanical properties are extremely limited in the literature. In this context, in this study, analytical and numerical analyzes of a contact problem created using functionally graded materials were carried out and the results were evaluated mutually. It has been decided that the contact areas and contact pressures acquired from numerical method are reasonably appropriate with the results obtained from the analytical method.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼