RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Development of a biosensor from aptamers for detection of the porcine reproductive and respiratory syndrome virus

        Chakpetch Kuitio,Natchaya Rasri,Duangnapa Kiriwan,Sasimanas Unajak,Kiattawee Choowongkomon 대한수의학회 2020 Journal of Veterinary Science Vol.21 No.5

        Background: Recently, the pork industry of Thailand faced an epidemic of highly virulent strains of porcine reproductive and respiratory syndrome virus (PRRSV), which spread throughout Southeast Asia, including the Lao People's Democratic Republic and Cambodia. Hence, the rapid and on-site screening of infected pigs on a farm is essential. Objectives: To develop the new aptamer as a biosensor for detection PRRSV which are rapid and on-site screening of infected pig. Methods: New aptamers against PRSSV were identified using the combined techniques of capillary electrophoresis, colorimetric assay by gold nanoparticles, and quartz crystal microbalance (QCM). Results: Thirty-six candidate aptamers of the PRRSV were identified from the systematic evolution of ligands by exponential enrichment (SELEX) by capillary electrophoresis. Only 8 out of 36 aptamers could bind to the PRSSV, as shown in a colorimetric assay. Of the 8 aptamers tested, only the 1F aptamer could bind specifically to the PRSSV when presented with the classical swine fever virus and a pseudo rabies virus. The QCM was used to confirm the specificity and sensitivity of the 1F aptamer with a detection limit of 1.87 × 1010 particles. Conclusions: SELEX screening of the aptamer equipped with capillary electrophoresis potentially revealed promising candidates for detecting the PRRSV. The 1F aptamer exhibited the highest specificity and selectivity against the PRRSV. These findings suggest that 1F is a promising aptamer for further developing a novel PRRSV rapid detection kit.

      • KCI등재

        Biochemical and structural comparisons of non-nucleoside reverse transcriptase inhibitors against feline and human immunodeficiency viruses

        Siriluk Rattanabunyong,Khuanjarat Choengpanya,Chonticha Suwattanasophon,Duangnapa Kiriwan,Peter Wolschann,Thomanai Lamtha,Abdul Rajjak Shaikh,Jatuporn Rattanasrisomporn,Kiattawee Choowongkomon 대한수의학회 2023 Journal of Veterinary Science Vol.24 No.5

        Background: Feline immunodeficiency virus (FIV) causes an acquired immunodeficiency-like syndrome in cats. FIV is latent. No effective treatment has been developed for treatment the infected cats. The first and second generations non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV treatment, nevirapine (NVP) and efavirenz (EFV), and rilpivirine (RPV), were used to investigate the potential of NNRTIs for treatment of FIV infection. Objective: This study aims to use experimental and in silico approaches to investigate the potential of NNRTIs, NVP, EFV, and RPV, for inhibition of FIV reverse transcriptase (FIV-RT). Methods: The FIV-RT and human immunodeficiency virus reverse transcriptase (HIV-RT) were expressed and purified using chromatography approaches. The purified proteins were used to determine the IC50 values with NVP, EFV, and RPV. Surface plasmon resonance (SPR) analysis was used to calculate the binding affinities of NNRTIs to HIV-RT and FIV-RT. The molecular docking and molecular dynamic simulations were used to demonstrate the mechanism of FIV-RT and HIV-RT with first and second generation NNRTI complexes. Results: The IC50 values of NNRTIs NVP, EFV, and RPV against FIV-RT were in comparable ranges to HIV-RT. The SPR analysis showed that NVP, EFV, and RPV could bind to both enzymes. Computational calculation also supports that these NNRTIs can bind with both FIV-RT and HIV-RT. Conclusions: Our results suggest the first and second generation NNRTIs (NVP, EFV, and RPV) could inhibit both FIV-RT and HIV-RT.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼