RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The effect of materials properties on the reliability of hydraulic turbine runners

        Denis Thibault,Martin Gagnon,Stéphane Godin 한국유체기계학회 2015 International journal of fluid machinery and syste Vol.8 No.4

        The failure of hydraulic turbine runners is a rare event. So in order to assess the reliability of these components one cannot rely solely on the number of observed failures in a given population. However, as there is a limited number of degradation mechanisms involved, it is possible to use physically-based reliability models. Such models are often more complicated but are able to account for physical parameters in the degradation process. They can therefore help provide solutions to improve reliability. With such models, the effect of materials properties on runner reliability can be highlighted. This paper presents a brief review of the Kitagawa-Takahashi diagram which links the damage tolerance approach, based on fracture mechanics, to the stress or strain-life approaches. Using simplified response spectra based on runner stress measurements, we will show how fatigue reliability is sensitive to materials fatigue properties, namely fatigue crack propagation behaviour and fatigue limit obtained on S-N curves. Furthermore, we will review the influence of the main microstructural features observed in 13%Cr-4%Ni stainless steels commonly used for runner manufacturing. The goal is ultimately to identify the most influential microstructural features and to quantify their effect on fatigue reliability of runners.

      • SCOPUSKCI등재

        The effect of materials properties on the reliability of hydraulic turbine runners

        Thibault, Denis,Gagnon, Martin,Godin, Stephane Korean Society for Fluid machinery 2015 International journal of fluid machinery and syste Vol.8 No.4

        The failure of hydraulic turbine runners is a rare event. So in order to assess the reliability of these components one cannot rely solely on the number of observed failures in a given population. However, as there is a limited number of degradation mechanisms involved, it is possible to use physically-based reliability models. Such models are often more complicated but are able to account for physical parameters in the degradation process. They can therefore help provide solutions to improve reliability. With such models, the effect of materials properties on runner reliability can be highlighted. This paper presents a brief review of the Kitagawa-Takahashi diagram which links the damage tolerance approach, based on fracture mechanics, to the stress or strain-life approaches. Using simplified response spectra based on runner stress measurements, we will show how fatigue reliability is sensitive to materials fatigue properties, namely fatigue crack propagation behaviour and fatigue limit obtained on S-N curves. Furthermore, we will review the influence of the main microstructural features observed in 13%Cr-4%Ni stainless steels commonly used for runner manufacturing. The goal is ultimately to identify the most influential microstructural features and to quantify their effect on fatigue reliability of runners.

      • SCOPUSKCI등재

        Hydraulic Runner Design Method for Lifetime

        Sabourin, Michel,Thibault, Denis,Bouffard, David-Alexandre,Levesque, Martin Korean Society for Fluid machinery 2010 International journal of fluid machinery and syste Vol.3 No.4

        Quest for reliability of hydraulic runners is a concern for all mature electricity producers. The fatigue damage caused by dynamics loads is frequently the root cause of runner failure. This paper presents the damage tolerance approach based on fracture mechanics as the method chosen by Alstom and Hydro-Qu$\acute{e}$bec to predict effects of damage on runner lifetime and consequently to be use as a design method. This is sustained by a research on fracture mechanics properties of runner materials and by recommendations on the strategy to define a safety margin for design. The acquired knowledge permits to identify potential improvement of the runner lifetime without significant cost increase, like being more specific on some chemical composition or heat treatment.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼