RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        ACTIVE DIRECT TILT CONTROL FOR STABILITY ENHANCEMENT OF A NARROW COMMUTER VEHICLE

        D.PIYABONGKARN,T.KEVICZKY,R.RAJAMANI 한국자동차공학회 2004 International journal of automotive technology Vol.5 No.2

        Narrow commuter vehicles can address many congestion, parking and pollution issues associated with urban transportation. In making narrow vehicles safe, comfortable and acceptable to the public, active tilt control systems are likely to play a crucial role. This paper focuses on the development of an active direct tilt control system for a narrow vehicle that utilizes an actuator in the vehicle suspension. A simple PD controller can stabilize the tilt dynamics of the vehicle to any desired tilt angle. However, the challenges in the tilt control system design arise in determining the desired lean angle in real-time and in minimizing tilt actuator torque requirements. Minimizing torque requirements requires the tilting and turning of the vehicle to be synchronized as closely as possible. This paper explores two different control design approaches to meet these challenges. A Receding Horizon Controller (RHC) is first developed so as to systematically incorporate preview on road curvature and synchronize tilling with driver initiated turning. Second, a nonlinear control system that utilizes feedback linearization is developed and found to be effective in reducing torque. A close analysis of the complex feedback linearization controller provides insight into which terms are important for reducing actuator effort. This is used to reduce controller complexity and obtain a simple nonlinear controller that provides good performance.

      • KCI등재

        Multi-response optimization of Nd:YAG laser cutting parameters of Ti-6Al-4V superalloy sheet

        A. Tamilarasan,D. Rajamani 대한기계학회 2017 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.31 No.2

        This study proposes a multi-response optimization approach for the Nd: YAG laser cutting parameters of titanium superalloy sheet (Ti-6Al-4V). The Box-Behnken design was utilized to plan the experiments, and response surface methodology was employed to develop experimental models. Four input parameters, including pulse width, pulse energy, cutting speed, and gas pressure, were set during the experiment, and kerf deviation and metal removal rate were considered as the performance characteristics. Pores, dross, and striation lines were observed on the kerf wall of the laser-cut surface through scanning electron microscopy. With the suitable mathematical models established, a search optimization procedure based on the use of desirability function was used to optimize the performance characteristics. A confirmation experiment was also conducted to validate the optimized process parameters. The relative error is less than ±2 %, thus confirming the feasibility and effectiveness of the adopted approach.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼