RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Edge-Functionalized Graphene Nanoribbon Encapsulation To Enhance Stability and Control Kinetics of Hydrogen Storage Materials

        Wan, Liwen F.,Cho, Eun Seon,Marangoni, Tomas,Shea, Patrick,Kang, ShinYoung,Rogers, Cameron,Zaia, Edmond,Cloke, Ryan R.,Wood, Brandon C.,Fischer, Felix R.,Urban, Jeffrey J.,Prendergast, David American Chemical Society 2019 Chemistry of materials Vol.31 No.8

        <P>Hydrogen is a long-term clean energy carrier that enables completely carbon-free energy production. However, practical implementation of hydrogen fuel technologies is restricted because of lack of safe and high-performing storage materials. Here, we report Mg nanocrystals encapsulated by narrow, bottom-up synthesized graphene nanoribbons (GNRs) as environmentally stable and high-capacity hydrogen storage materials. As an encapsulation medium, GNRs offer similar functionalities as reduced graphene oxide to protect the encapsulated Mg nanocrystals from extensive oxidation, while allowing penetrations of hydrogen. In addition, the GNRs can be edge functionalized to tune the (de-)hydrogenation kinetics, in particular for the processes occurred at the GNR-Mg interfaces. In this work, four different types of edge-functional groups were introduced into GNRs with the goal of comparing their cycling performances because of edge functionalization. On the basis of detailed kinetic analysis coupled with first-principles calculations, we propose that edge-functional groups can contribute to the reduction of kinetic barriers for surface hydrogen reactions at the interface with the GNR by stabilizing surface defects. Furthermore, the GNR-Mg composite exhibited higher hydrogen storage capacity (7.1 wt % of hydrogen based on the total composite) compared with the current literature while demonstrating long-term air stability. This work suggests that the rational design of edge-functional groups in graphene derivatives can provide a general and novel paradigm for simultaneous encapsulation and hydrogen storage catalysis in simple metal or complex metal nanocrystals.</P> [FIG OMISSION]</BR>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼