RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Enhanced dielectric properties and discharged energy density of composite films using submicron PZT particles

        Chen, Guanliang,Lin, Xiujuan,Li, Jianan,Fisher, John G.,Zhang, Yan,Huang, Shifeng,Cheng, Xin Elsevier 2018 CERAMICS INTERNATIONAL Vol.44 No.13

        <P><B>Abstract</B></P> <P>Flexible dielectric composite films are highly desirable materials with potential application in capacitors due to their high energy density and discharged efficiency. However, agglomeration induced by the large surface energy of nanoparticles and their large dielectric losses are unfavorable to the improvement of energy density. Submicron lead zirconate titanate (PZT) particles have shown great potential as filler in achieving a high energy storage capacity because of their excellent dielectric properties and good dispersion. In this work, calcined PZT particles were used to prepare PZT/polyvinylidene fluoride (PVDF) composite films. The results showed that composite films of high quality could be obtained even with high contents of submicron PZT particles. The introduction of PZT particles significantly improved the dielectric performance of composite films compared with that of the pristine PVDF film. The discharged energy density of composite films with 10 vol% PZT particles achieved 6.41 J/cm<SUP>3</SUP> at 250 kV/mm. A high efficiency of 87.25% was obtained at 50 kV/mm. These findings confirm the feasibility of PZT particles as inorganic filler in composite films for energy storage applications.</P>

      • KCI등재

        Evaluation of CD4+ cells infiltration as a prognostic factor in cervical intraepithelial neoplasia 2

        Guanliang Chen,Takashi Iwata,Masaki Sugawara,Hiroshi Nishio,Yuki Katoh,Iwao Kukimoto,Daisuke Aoki 대한부인종양학회 2023 Journal of Gynecologic Oncology Vol.34 No.1

        Objective: To identify candidate predictors for the prognosis of cervical intraepithelial neoplasia 2 (CIN2) lesions and evaluate the prognostic value of the local immune response. Methods: One hundred fifteen CIN2 patients were enrolled. The percentage of p16-, minichromosome maintenance complex component 2- or apolipoprotein B mRNA editing enzyme catalytic subunit 3G (APOBEC3G)-positive cells was determined immunohistochemically. Tumor-infiltrating lymphocytes (TILs) in intertumoral lesions were scored using an automated system. CIN3 disease progression and regression rates were estimated by the Kaplan–Meier method. A case-control study was conducted to screen CIN2 prognostic factors in 10 regression and 10 progression patients. Selected factors were examined in a cohort study to determine their prognostic value for CIN2. Results: Among all participants, the cumulative progression and regression rates at 60 months were 0.477 and 0.510, respectively. In the case-control study, p16- and APOBEC3G-positive cells were higher in the progression group (p=0.043, p=0.023). Additionally, CD4+ cell infiltration was enhanced in the regression group (p=0.023). The cohort study revealed a significantly increased progression rate in patients with elevated p16-positive cells (p<0.001), and increased CD4+ TIL infiltration was associated with better regression (p=0.011). Kaplan–Meier analysis according to human papillomavirus (HPV) positivity revealed a greater CIN3 development risk in HPV16-positive patients than in HPV16-negative cases. Finally, multivariate analysis identified HPV16 infection and CD4+ TIL infiltration as independent prognostic factors in CIN2 regression. Conclusion: CD4+ TIL infiltration in intertumoral lesions was related with CIN2 regression. Our findings suggest CD4+ TIL infiltration may be useful for the triage of CIN2 patients.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼