RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Non-contact multi-particle annular patterning and manipulation with ultrasound microbeam

        Lee, Changyang,Seob Jeong, Jong,Youn Hwang, Jae,Lee, Jungwoo,Kirk Shung, K. American Institute of Physics 2014 APPLIED PHYSICS LETTERS Vol.104 No.24

        <P>Multiparticle-trapping offers diverse opportunities and applications in biotechnology. It can be applied to creating various functional materials or organizing reactive particles. In this paper, we demonstrate that it is possible to trap and manipulate multi-particles in an annular pattern with a 24?MHz focused ring-type single element ultrasound transducer. Acoustic ring trap can be useful in undertaking biotropism studies due to an equal-distance condition from the center. Also, this ring trap could serve as a force shield to protect analysis area from other cells. The experimental results showed the capability of the proposed method as a multi-cell manipulator in formatting specific patterns of small cells like sperms.</P>

      • Backscattering measurement from a single microdroplet

        Jungwoo Lee,Jin Ho Chang,Jong Seob Jeong,Changyang Lee,Shia-Yen Teh,Lee, A,Shung, K IEEE 2011 and Frequency Control Vol.58 No.4

        <P>Backscattering measurements for acoustically trapped lipid droplets were undertaken by employing a P[VDF-TrFE] broadband transducer of f-number = 1, with a bandwidth of 112%. The wide bandwidth allowed the transmission of the 45 MHz trapping signal and the 15 MHz sensing signal using the same transducer. Tone bursts at 45 MHz were first transmitted by the transducer to hold a single droplet at the focus (or the center of the trap) and separate it from its neighboring droplets by translating the transducer perpendicularly to the beam axis. Subsequently, 15 MHz probing pulses were sent to the trapped droplet and the backscattered RF echo signal received by the same transducer. The measured beam width at 15 MHz was measured to be 120 μ m. The integrated backscatter (IB) coefficient of an individual droplet was determined within the 6-dB bandwidth of the transmit pulse by normalizing the power spectrum of the RF signal to the reference spectrum obtained from a flat reflector. The mean IB coefficient for droplets with a 64 μ m average diameter (denoted as cluster A) was -107 dB, whereas it was -93 dB for 90-μm droplets (cluster B). The standard deviation was 0.9 dB for each cluster. The experimental values were then compared with those computed with the T-matrix method and a good agreement was found: the difference was as small as 1 dB for both clusters. These results suggest that this approach might be useful as a means for measuring ultrasonic backscattering from a single microparticle, and illustrate the potential of acoustic sensing for cell sorting.</P>

      • Cell membrane deformation induced by a fibronectin-coated polystyrene microbead in a 200-MHz acoustic trap

        Jae Youn Hwang,Changyang Lee,Kwok Ho Lam,Hyung Ham Kim,Jungwoo Lee,Shung, K. Kirk IEEE 2014 and Frequency Control Vol.61 No.3

        <P>The measurement of cell mechanics is crucial for a better understanding of cellular responses during the progression of certain diseases and for the identification of the cell's nature. Many techniques using optical tweezers, atomic force microscopy, and micro-pipettes have been developed to probe and manipulate cells in the spatial domain. In particular, we recently proposed a two-dimensional acoustic trapping method as an alternative technique for small particle manipulation. Although the proposed method may have advantages over optical tweezers, its applications to cellular mechanics have not yet been vigorously investigated. This study represents an initial attempt to use acoustic tweezers as a tool in the field of cellular mechanics in which cancer cell membrane deformability is studied. A press-focused 193-MHz single-element lithium niobate (LiNbO<SUB>3</SUB>) transducer was designed and fabricated to trap a 5-μm polystyrene microbead near the ultrasound beam focus. The microbeads were coated with fibronectin, and trapped before being attached to the surface of a human breast cancer cell (MCF-7). The cell membrane was then stretched by remotely pulling a cell-attached microbead with the acoustic trap. The maximum cell membrane stretched lengths were measured to be 0.15, 0.54, and 1.41 μm at input voltages to the transducer of 6.3, 9.5, and 12.6 V<SUB>pp</SUB>, respectively. The stretched length was found to increase nonlinearly as a function of the voltage input. No significant cytotoxicity was observed to result from the bead or the trapping force on the cell during or after the deformation procedure. Hence, the results convincingly demonstrated the possible application of the acoustic trapping technique as a tool for cell manipulation.</P>

      • 인공무릎관절 수술에서의 영역기반 ICP 알고리즘

        기재홍(Jaehong Key),이문규(Moonkyu Lee),이창양(Changyang Lee),김동민(Dong M. Kim),유선국(Sun K. Yoo),최귀원(Kuiwon Choi) 한국정밀공학회 2006 한국정밀공학회 학술발표대회 논문집 Vol.2006 No.5월

        Image Guided Surgery(IGS) system has been developed to provide exquisite and objective information to surgeons for surgical operation process. It is necessary that registration technique is important to match between 3D image model reconstructed from image modalities and the object operated by surgeon. Majority techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to its invasive protocol inserting fiducial markers in patient"s bone. Therefore, shape-based registration technique using geometric characteristics of the object has been invested to improve the limitation of IGS system. During Total Knee Replacement(TKR) operation, it is challenge to register with high accuracy by using shape-based registration because the area to acquire sample data from knee is limited. We have developed region-based 3D registration technique based on anatomical landmarks on the object and this registration algorithm was evaluated in femur model. It was found that region-based algorithm can improve the accuracy in 3D registration. We expect that this technique can efficiently improve the IGS system.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼