RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재SCOPUS

        후자린산(Fusaric acid) 생성 Fusarium 종의 신속 검출 PCR

        이데레사,김소수,함현희,이수형,홍성기,류재기,Lee, Theresa,Kim, Sosoo,Busman, Mark,Proctor, Robert H.,Ham, Hyeonhui,Lee, Soohyung,Hong, Sung Kee,Ryu, Jae-Gee 한국식물병리학회 2015 식물병연구 Vol.21 No.4

        후자린산은 Fusarium이 생성하는 독소로서 다른 Fusarium 독소와 함께 독성을 증진시킬 수 있다. 후자린산 독소를 특이적으로 검출하기 위해 후자린산의 생합성유전자 중 전사인자인 FUB10을 증폭하는 프라이머를 제작하였다. Fub10-f와 Fub10-r 프라이머쌍으로 PCR을 수행했을 때, F. oxysporum, F. proliferatum, F. verticillioides, F. anthophilum, F. bulbicola, F. circinatum, F. fujikuroi, F. redolens, F. sacchari, F. subglutinans, F. thapsinum에서 약 550 bp의 단일밴드가 증폭되었으며 이들은 모두 후자린산을 생성하는 것으로 알려졌다. 반면 트라이코쎄신을 생성하는 종에서는 FUB10 특이 밴드가 증폭되지 않았다. 후자린산은 푸모니신을 생성하는 종에서 함께 생성될 수 있기 때문에 FUB10 프라이머와 푸모니신 생합성유전자인 FUM1 프라이머를 이용한 multiplex PCR을 수행하였다. 그 결과 푸모니신 생성종인 F. proliferatum과 F. verticillioides에서 밴드가 모두 증폭되었으며 이는 두 가지 독소를 생성할 수 있는 종에서 동시 검출이 가능함을 시사하였다. Fusaric acid is a mycotoxin produced by species of the fungus Fusarium and can act synergistically with other Fusarium toxins. In order to develop a specific detection method for fusaric acid-producing fungus, PCR primers were designed to amplify FUB10, a transcription factor gene in fusaric acid biosynthetic gene cluster. When PCR with Fub10-f and Fub10-r was performed, a single band (~550 bp) was amplified from F. oxysporum, F. proliferatum, F. verticillioides, F. anthophilum, F. bulbicola, F. circinatum, F. fujikuroi, F. redolens, F. sacchari, F. subglutinans, and F. thapsinum, all of which were known for fusaric acid production. Whereas the FUB10 specific band was not amplified from Fusarium species known to be trichothecene producer. Because production of fusaric acid can co-occur in species that also produce fumonisin mycotoxins, we developed a multiplex PCR assay using the FUB10 primers as well as primers for the fumonisin biosynthetic gene FUM1. The assay yielded amplicons from fumonisin producers such as F. proliferatum and F. verticillioides, allowing for the simultaneous detection of species with the genetic potential to produce both types of mycotoxins.

      • SCISCIESCOPUS

        Identification of a 12-gene Fusaric Acid Biosynthetic Gene Cluster in Fusarium Species Through Comparative and Functional Genomics.

        Brown, Daren W,Lee, Seung-Ho,Kim, Lee-Han,Ryu, Jae-Gee,Lee, Soohyung,Seo, Yunhee,Kim, Young Ho,Busman, Mark,Yun, Sung-Hwan,Proctor, Robert H,Lee, Theresa APS Press 2015 Molecular plant-microbe interactions Vol.28 No.3

        <P>In fungi, genes involved in biosynthesis of a secondary metabolite (SM) are often located adjacent to one another in the genome and are coordinately regulated. These SM biosynthetic gene clusters typically encode enzymes, one or more transcription factors, and a transport protein. Fusaric acid is a polyketide-derived SM produced by multiple species of the fungal genus Fusarium. This SM is of concern because it is toxic to animals and, therefore, is considered a mycotoxin and may contribute to plant pathogenesis. Preliminary descriptions of the fusaric acid (FA) biosynthetic gene (FUB) cluster have been reported in two Fusarium species, the maize pathogen F. verticillioides and the rice pathogen F. fujikuroi. The cluster consisted of five genes and did not include a transcription factor or transporter gene. Here, analysis of the FUB region in F. verticillioides, F. fujikuroi, and F. oxysporum, a plant pathogen with multiple hosts, indicates the FUB cluster consists of at least 12 genes (FUB1 to FUB12). Deletion analysis confirmed that nine FUB genes, including two Zn(II)2Cys6 transcription factor genes, are required for production of wild-type levels of FA. Comparisons of FUB cluster homologs across multiple Fusarium isolates and species revealed insertion of non-FUB genes at one or two locations in some homologs. Although the ability to produce FA contributed to the phytotoxicity of F. oxysporum culture extracts, lack of production did not affect virulence of F. oxysporum on cactus or F. verticillioides on maize seedlings. These findings provide new insights into the genetic and biochemical processes required for FA production.</P>

      • Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi

        Proctor, Robert H.,McCormick, Susan P.,Kim, Hye-Seon,Cardoza, Rosa E.,Stanley, April M.,Lindo, Laura,Kelly, Amy,Brown, Daren W.,Lee, Theresa,Vaughan, Martha M.,Alexander, Nancy J.,Busman, Mark,Guti&ea Public Library of Science 2018 PLoS pathogens Vol.14 No.4

        <▼1><P>Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus <I>Fusarium</I> are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some <I>Fusarium</I> species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (<I>TRI</I>) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in <I>TRI</I> gene duplication and number of <I>TRI</I> loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the <I>TRI</I> cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of <I>TRI</I> cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi.</P></▼1><▼2><P><B>Author summary</B></P><P>Toxins produced by pathogens can contribute to infection and/or colonization of hosts. Some toxins consist of a family of metabolites with similar but distinct chemical structures. This structural variation can affect biological activity, which in turn likely contributes to adaptation to different environments, including to different hosts. Trichothecene toxins consist of over 150 structurally distinct molecules produced by certain fungi, including some plant and insect pathogens. In multiple systems that have been examined, trichothecenes contribute to pathogenesis on plants. To elucidate the evolutionary processes that have given rise to trichothecene structural variation, we conducted comparative analyses of nine fungal genera, most of which produce different trichothecene structures. Using genomic, molecular biology, phylogenetic, and analytical chemistry approaches, we obtained evidence that trichothecene structural variation has arisen primarily from gain, loss, and functional changes of trichothecene biosynthetic genes. Our results also indicate that some structural changes have arisen independently in different fungi. Our findings provide insight into genetic and biochemical changes that can occur in toxin biosynthetic pathways as fungi with the pathways adapt to different environmental conditions.</P></▼2>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼