RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Oxidatively Stable Nanoporous Silicon Photocathodes with Enhanced Onset Voltage for Photoelectrochemical Proton Reduction

        Zhao, Y.,Anderson, N. C.,Zhu, K.,Aguiar, J. A.,Seabold, J. A.,Lagemaat, J. van de,Branz, H. M.,Neale, N. R.,Oh, J. American Chemical Society 2015 NANO LETTERS Vol.15 No.4

        <P>Stable and high-performance nanoporous “black silicon” photoelectrodes with electrolessly deposited Pt nanoparticle (NP) catalysts are made with two metal-assisted etching steps. Doubly etched samples exhibit an ∼300 mV positive shift in photocurrent onset for photoelectrochemical proton reduction compared to oxide-free planar Si with identical catalysts. We find that the photocurrent onset voltage of black Si photocathodes prepared from single-crystal planar Si wafers by an Ag-assisted etching process increases in oxidative environments (e.g., aqueous electrolyte) owing to a positive flat-band potential shift caused by surface oxidation. However, within 24 h, the surface oxide layer becomes a kinetic barrier to interfacial charge transfer that inhibits proton reduction. To mitigate this issue, we developed a novel second Pt-assisted etch process that buries the Pt NPs deep into the nanoporous Si surface. This second etch shifts the onset voltage positively, from +0.25 V to +0.4 V versus reversible hydrogen electrode, and reduces the charge-transfer resistance with no performance decrease seen for at least two months. PEC performance was stable owing to Pt NP catalysts that were buried deeply in the photoelectrode by the second etch, below a thick surface layer comprised primarily of amorphous SiO<SUB>2</SUB> along with some degree of remaining crystalline Si as observed by scanning and transmission electron micrographs. Electrochemical impedance studies reveal that the second etch leads to a considerably smaller interfacial charge-transfer resistance than samples without the additional etch, suggesting that burying the Pt NPs improves the interfacial contact to the crystalline silicon surface.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/nalefd/2015/nalefd.2015.15.issue-4/acs.nanolett.5b00086/production/images/medium/nl-2015-00086g_0008.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/nl5b00086'>ACS Electronic Supporting Info</A></P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼