RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A Numerical Model of the Temperature Field of the Cast and Solidified Ceramic Material

        Frantisek Kavicka,Jana Dobrovska,Bohumil Sekanina,Karel Stransky,Josef Stetina 한국소성가공학회 2010 기타자료 Vol.2010 No.6

        Corundo-baddeleyit material (CBM) ? EUCOR ? is a heat- and wear-resistant material even at extreme temperatures. This article introduces a numerical model of solidification and cooling of this material in a non-metallic mould. The model is capable of determining the total solidification time of the casting and also the place of the casting which solidifies last. Furthermore, it is possible to calculate the temperature gradient in any point and time, and also determine the local solidification time and the solidification interval of any point. The local solidification time is one of the input parameters for the cooperating model of chemical heterogeneity. This second model and its application on samples of EUCOR prove that the applied method of measurement of chemical heterogeneity provides detailed quantitative information on the material structure and makes it possible to analyse the solidification process. The analysis of this process entails statistical processing of the results of the measurements of the heterogeneity of the components of EUCOR and performs correlation of individual components during solidification. The crystallisation process seems to be very complicated, where the macro- and microscopic segregations differ significantly. The verification of both numerical models was conducted on a real cast 350 x 200 x 400 mm block.

      • Numerical Optimization of the Method of Cooling of a Massive Casting of Ductile Cast-Iron

        Jana Dobrovska,Frantisek Kavicka,Karel Stransky,Bohumil Sekanina,Josef Stetina 한국소성가공학회 2010 기타자료 Vol.2010 No.6

        The numerical models of the temperature field of solidifying castings, according to various authors, have been observing two main goals ? directed solidification as the basic assumption for the healthiness of a casting and the optimization of the technology while maintaining the optimal product properties. The achievement of these goals is conditioned by the ability to analyze and, successively, to control the effect of the deciding factors, which either characterize the process or accompany it. An original application of ANSYS simulated the forming of the temperature field of a massive casting from ductile cast-iron during the application various methods of its cooling using steel chills. The numerical model managed to optimize more than one method of cooling but, in addition to that, provided serious results for the successive model of structural and chemical heterogeneity, and so it also contributes to influencing the pouring structure. The file containing the acquired results from both models, as well as from their organic unification, brings new and, simultaneously, remarkable findings of causal relationships between the structural and chemical heterogeneity (i.e. between the sizes of the spheroids of graphite, the cells, density of the spheroids of graphite, etc.) and the local solidification time in any point of the casting. The determined relations therefore enable the prediction of the face density of the spheroids of graphite in dependence on the local solidification time. The calculated temperature field of a two-ton 500x500x1000 mm casting of ductile cast-iron with various methods of cooling has successfully been compared with temperatures obtained experimentally. The casting was cast in sand mould. The calculated model of the kinetics of the temperature field of the casting was verified during casting with temperature measurements in selected points.This has created a tool for the optimization of the structure with an even distribution of the spheroids of graphite in such a way so as to minimize the occurrence of degenerated shapes of graphite, which happens to be one of the conditions for achieving good mechanical properties of castings of ductile cast-iron.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼