RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        A Novel Flexible PCB Conductive Structure for Electrodynamic Bearings and Measurement in its Induced Voltage

        Ding, Guoping,Sandtner, Jan,Bleuler, Hannes The Korean Institute of Electrical Engineers 2015 Journal of Electrical Engineering & Technology Vol.10 No.5

        This paper proposes the concept of FlexPCB(flexible Printed Circuit Board) conductive structure for electrodynamic bearings. It has three main advantages: easy “printing” of considerably thin conductive wires, resulting in potential reduction in stray eddy currents; realization of specific conductive configurations with high precision to optimize the eddy current flowing; simplicity in being wound to cylinders or hollow cylinders of different diameters. To verify this new concept, the FlexPCB conductive structure was manufactured, an axial electrodynamic bearing test rig was built and the conductive structure's induced voltage was measured along the axial displacements from 0mm to 56mm at three rotating speeds. The finite element method was used to calcuatlate the flux density of electrodynamic bearing and induced voltage of the FlexPCB conductive structure. The experimental results are compared with the results from the FEM calculation. It is concluded that the measured and calculated induced voltages have consistency in the middle part of the bearing.

      • KCI등재

        A Novel Flexible PCB Conductive Structure for Electrodynamic Bearings and Measurement in its Induced Voltage

        Guoping Ding,Jan Sandtner,Hannes Bleuler 대한전기학회 2015 Journal of Electrical Engineering & Technology Vol.10 No.5

        This paper proposes the concept of FlexPCB(flexible Printed Circuit Board) conductive structure for electrodynamic bearings. It has three main advantages: easy “printing” of considerably thin conductive wires, resulting in potential reduction in stray eddy currents; realization of specific conductive configurations with high precision to optimize the eddy current flowing; simplicity in being wound to cylinders or hollow cylinders of different diameters. To verify this new concept, the FlexPCB conductive structure was manufactured, an axial electrodynamic bearing test rig was built and the conductive structure’s induced voltage was measured along the axial displacements from 0mm to 56mm at three rotating speeds. The finite element method was used to calcuatlate the flux density of electrodynamic bearing and induced voltage of the FlexPCB conductive structure. The experimental results are compared with the results from the FEM calculation. It is concluded that the measured and calculated induced voltages have consistency in the middle part of the bearing.

      • Modeling and Design of a Gripper for a Robotic Surgical System Integrating Force Sensing Capabilities in 4 DOF

        Mathieu Stephan,G. Rognini,A. Sengul,R. Beira,L. Santos-Carreras,H. Bleuler 제어로봇시스템학회 2010 제어로봇시스템학회 국제학술대회 논문집 Vol.2010 No.10

        This paper reports the design of a Minimally Invasive Surgery (MIS) gripper with four degrees of freedom force sensing capabilities. It will be used to provide force feedback during surgical interventions in which the surgeon will remotely manipulate surgical instruments through the use of a robotic arm directly inserted into the patient’ insufflated abdominal cavity. Suturing, dissection and ablation instruments will be attached on this 8 mm x 9 mm x 3mm MIS gripper. Finite Element Analysis is used to model the gripper and determine the deformation matrix coefficients. Gripping and XYZ Cartesian direction applied forces can be measured with a resolution of 0.1N for a maximum force of 10N. However a significant difference between the predicted values by the Finite Element model and those obtained in the characterization of the force sensor is found. This divergence is due to misalignments of the strain gages located on the blades of the gripper. Future work will be focused on reducing misalignment of force sensors as well as other error sources.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼