RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Time-dependent bond transfer length under pure tension in one way slabs

        Behnam Vakhshouri 국제구조공학회 2016 Structural Engineering and Mechanics, An Int'l Jou Vol.60 No.2

        In a concrete member under pure tension, the stress in concrete is uniformly distributed over the whole concrete section. It is supposed that a local bond failure occurs at each crack, and there is a relative slip between steel and surrounding concrete. The compatibility of deformation between the concrete and reinforcement is thus not maintained. The bond transfer length is a length of reinforcement adjacent to the crack where the compatibility of strain between the steel and concrete is not maintained because of partially bond breakdown and slip. It is an empirical measure of the bond characteristics of the reinforcement, incorporating bar diameter and surface characteristics such as texture. Based on results from a series of previously conducted long-term tests on eight restrained reinforced concrete slab specimens and material properties including creep and shrinkage of two concrete batches, the ratio of final bond transfer length after all shrinkage cracking, to THE initial bond transfer length is presented.

      • KCI등재

        Effect of fiber reinforcing on instantaneous deflection of self-compacting concrete one-way slabs under early-age loading

        Behnam Vakhshouri,Shami Nejadi 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.67 No.2

        The Early-age construction loading and changing properties of concrete, especially in the multi-story structures can affect the slab deflection, significantly. Based on previously conducted experiment on eight simply-supported one-way slabs this paper investigates the effect of concrete type, fiber type and content, loading value, cracking moment, ultimate moment and applied moment on the instantaneous deflection of Self-Compacting Concrete (SCC) slabs. Two distinct loading levels equal to 30% and 40% of the ultimate capacity of the slab section were applied on the slabs at the age of 14 days. A wide range of the existing models of the effective moment of inertia which are mainly developed for conventional concrete elements, were investigated. Comparison of the experimental deflection values with predictions of the existing models shows considerable differences between the recorded and estimated instantaneous deflection of SCC slabs. Calculated elastic deflection of slabs at the ages of 14 and 28 days were also compared with the experimental deflection of slabs. Based on sensitivity analysis of the effective parameters, a new model is proposed and verified to predict the effective moment of inertia in SCC slabs with and without fiber reinforcing under two different loading levels at the age of 14 days.

      • SCIESCOPUS

        Effect of fiber reinforcing on instantaneous deflection of self-compacting concrete one-way slabs under early-age loading

        Vakhshouri, Behnam,Nejadi, Shami Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.67 No.2

        The Early-age construction loading and changing properties of concrete, especially in the multi-story structures can affect the slab deflection, significantly. Based on previously conducted experiment on eight simply-supported one-way slabs this paper investigates the effect of concrete type, fiber type and content, loading value, cracking moment, ultimate moment and applied moment on the instantaneous deflection of Self-Compacting Concrete (SCC) slabs. Two distinct loading levels equal to 30% and 40% of the ultimate capacity of the slab section were applied on the slabs at the age of 14 days. A wide range of the existing models of the effective moment of inertia which are mainly developed for conventional concrete elements, were investigated. Comparison of the experimental deflection values with predictions of the existing models shows considerable differences between the recorded and estimated instantaneous deflection of SCC slabs. Calculated elastic deflection of slabs at the ages of 14 and 28 days were also compared with the experimental deflection of slabs. Based on sensitivity analysis of the effective parameters, a new model is proposed and verified to predict the effective moment of inertia in SCC slabs with and without fiber reinforcing under two different loading levels at the age of 14 days.

      • KCI등재

        Structural lightweight concrete containing expanded poly-styrene beads; Engineering properties

        Behnam Vakhshouri 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.34 No.4

        Light-Weight Concrete containing Expanded Poly-Styrene Beads (EPS-LWC) is an approved structural and nonstructural material characterized by a considerably lower density and higher structural efficiency, compared to concrete containing ordinary aggregates. The experimental campaign carried out in this project provides new information on the mechanical properties of structural EPS-LWC, with reference to the strength and tension (by splitting and in bending), the modulus of elasticity, the stress-strain curve in unconfined compression, the absorbed energy under compression and reinforcement-concrete bond. The properties measured at seven ages since casting, from 3 days to 91 days, in order to investigate their in-time evolution. Mathematical relationships are formulated as well, between the previous properties and time, since casting. The dependence of the compressive strength on the other mechanical properties of EPS-LWC is also described through an empirical relationship, which is shown to fit satisfactorily the experimental results.

      • KCI등재

        Compressive strength and mixture proportions of self-compacting light weight concrete

        Behnam Vakhshouri,Shami Nejadi 사단법인 한국계산역학회 2017 Computers and Concrete, An International Journal Vol.19 No.5

        Recently some efforts have been performed to combine the advantages of light-weight and self-compacting concrete in one package called Light-Weight Self-Compacting Concrete (LWSCC). Accurate prediction of hardened properties from fresh state characteristics is vital in design of concrete structures. Considering the lack of references in mixture design of LWSCC, investigating the proper mixture components and their effects on mechanical properties of LWSCC can lead to a reliable basis for its application in construction industry. This study utilizes wide range of existing data of LWSCC mixtures to study the individual and combined effects of the components on the compressive strength. From sensitivity of compressive strength to the proportions and interaction of the components, two equations are proposed to estimate the LWSCC compressive strength. Predicted values of the equations are in good agreement with the experimental data. Application of lightweight aggregate to reduce the density of LWSCC may bring some mixing problems like segregation. Reaching a higher strength by lowered density is a challenging problem that is investigated as well. The results show that, the compressive strength can be improved by increasing the of mixture density of LWSCC, especially in the range of density under 2000 Kg/m3.

      • KCI등재

        Self-compacting light-weight concrete; mix design and proportions

        Behnam Vakhshouri,Shami Nejadi 국제구조공학회 2016 Structural Engineering and Mechanics, An Int'l Jou Vol.58 No.1

        Utilization of mineral and chemical admixtures in concrete technology has led to changes in the formulation and mix design in recent decades, which has, in turn, made the concrete stronger and more durable. Lightweight concrete is an excellent solution in terms of decreasing the dead load of the structure, while self-compacting concrete eases the pouring and removes the construction problems. Combining the advantages of lightweight concrete and self-compacting concrete is a new and interesting research topic. Considering its light weight of structure and ease of placement, self-compacting lightweight concrete may be the answer to the increasing construction requirements of slender and more heavily reinforced structural elements. Twenty one laboratory experimental investigations published on the mix proportion, density and mechanical properties of lightweight self-compacting concrete from the last 12 years are analyzed in this study. The collected information is used to investigate the mix proportions including the chemical and mineral admixtures, light weight and normal weight aggregates, fillers, cement and water. Analyzed results are presented in terms of statistical expressions. It is very helpful for future research to choose the proper components with different ratios and curing conditions to attain the desired concrete grade according to the planned application.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼