RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Diketopyrrolopyrrole-based narrow band gap donors for efficient solution-processed organic solar cells

        Bagde, S.S.,Park, H.,Yang, S.n.,Jin, S.H.,Lee, S.H. North Holland ; Elsevier Science Ltd 2015 Chemical physics letters Vol.630 No.-

        <P>This study involves the development of two new small molecules comprising a diketopyrrolopyrrole (DPP) core flanked with donor units of triphenylamine (TPA-DPP-TPA) and fluorine (FL-DPP-FL) for application in bulk heterojunction (BHJ) organic solar cells (OSCs). The OSCs based on FL-DPP-FL and PC71 BM exhibited a PCE of 1.73%, compared to 1.45% for that obtained from devices of TPA-DPP-TPA. The morphological studies reveal that the enhancement in OSCs of FL-DPP-FL is mainly attributed to the improved nanoscale film morphology of the FL-DPP-FL:PC71 BM blend, which promoted the formation of smaller domains and greater donor-acceptor interpenetrated networks within the active layer. (C) 2015 Elsevier B.V. All rights reserved.</P>

      • Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells

        Ambade, S.,Ambade, R.,Eom, S.,Baek, M. J.,Bagde, S.,Mane, R.,Lee, S. H. Royal Society of Chemistry 2016 Nanoscale Vol.8 No.9

        <P>In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy) acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th: PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs.</P>

      • Low-Temperature Solution-Processed Thiophene-Sulfur-Doped Planar ZnO Nanorods as Electron-Transporting Layers for Enhanced Performance of Organic Solar Cells

        Ambade, Swapnil B.,Ambade, Rohan B.,Bagde, Sushil S.,Eom, Seung Hun,Mane, Rajaram S.,Shin, Won Suk,Lee, Soo-Hyoung American Chemical Society 2017 ACS APPLIED MATERIALS & INTERFACES Vol.9 No.4

        <P>1-D ZnO represents a fascinating class of nanostructures that are significant to optoelectronics. In this work, we investigated the use of an eco-friendly, metal free in situ doping through a pure thiophene-sulfur (5) on low temperature processed (<95 degrees C) and annealed (<170 degrees C), planar 1-D ZnO nanorods (ZnRs) spin-coated as a hole blocking and electron transporting layer (ETL) for inverted organic solar cells (iOSCs). The TEM, HRTEM, XPS, FT-IR, EDS and Raman studies clearly reveal that the thiophene-S (Thi-S) atom is incorporated on planar ZnRs. The investigations in electrical properties suggest the enhancement in conductivity after Thi-S doping on 1-D ZnRs. The iOSCs of poly.(3-hexylthiophene-2,5-diyl) and phenyl-C-61-butyric acid methyl ester (P3HT: PC60BM) photoactive layer containing thiophene-S doped planar ZnRs (Thi-S-PZnRs) as ETL exhibits power conversion efficiency (PCE) of 3.68% under simulated AM 1.5 G, 100 mW cm(-2) illumination. The similar to 47% enhancement in PCE compared with pristine planar ZnRs (PCE = 2.38%) ETL is attributed to a combination of desirable energy level alignment, morphological modification, increased conductivity and doping effect. The universality of Thi-S-PZnRs ETL is demonstrated by the highest PCE of 8.15% in contrast to 6.50% exhibited by the iOSCs of ZnRs ETL for the photoactive layer comprising of poly[4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)benzo[1,2-b;4,5-b]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] : phenyl-C71-butyric acid methyl ester (PTB7-Th: PCB71M). This enhancement in PCE is observed to be driven mainly through improved photovoltaic parameters like fill factor (ff) as well as photocurrent density (J(sc)), which are assigned to increased conductivity, exciton dissociation, and effective charge extraction, while; better ohmic contact, reduced charge recombination, and low leakage current density resulted in increased Voc.</P>

      • Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor applications

        Ambade, R.,Ambade, S.,Shrestha, N.,Salunkhe, R.,Lee, W.,Bagde, S.,Kim, J.,Stadler, F.,Yamauchi, Y.,Lee, S. H. Royal Society of Chemistry 2017 Journal of materials chemistry. A, Materials for e Vol.5 No.1

        <P>One-dimensional (1D) nanostructured materials have attracted intense interest because they are superior for applications when compared to their bulk counterparts, owing to their unique and fascinating properties. We thus demonstrate the development of conducting 1D polythiophene (PTh) nanofibers in hollow TiO2 nanotube arrays (TNTs) by controlling nucleation and growth during the electropolymerization of the thiophene monomer. The progression of nanofiber (NF) formation in the hollow interiors of the TNTs follows a three-dimensional instantaneous nucleation and growth mode, in which the polymer grows at a rate that does not allow for the build-up of the polymer on new polymerization sites, but only on existing ones. The formation of highly conductive dienes of PTh is confirmed, with increased conjugation in PTh NFs grown in the confined matrix of TNTs. These 1D PTh-TNT NFs show potential as a promising supercapacitor electrode material, exhibiting a high specific capacitance of 1052 F g(-1), which clearly highlights their importance as potential next-generation charge storage entities.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼