RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Modeling the permeability of heterogeneous oil reservoirs using a robust method

        Arash Kamari,Farzaneh Moeini,Mohammad-Javad Shamsoddini-Moghadam,Seyed-Ali Hosseini,Amir H. Mohammadi,Abdolhossein Hemmati-Sarapardeh 한국지질과학협의회 2016 Geosciences Journal Vol.20 No.2

        Permeability as a fundamental reservoir property plays a key role in reserve estimation, numerical reservoir simulation, reservoir engineering calculations, drilling planning, and mapping reservoir quality. In heterogeneous reservoir, due to complexity, natural heterogeneity, non-uniformity, and non-linearity in parameters, prediction of permeability is not straightforward. To ease this problem, a novel mathematical robust model has been proposed to predict the permeability in heterogeneous carbonate reservoirs. To this end, a fairly new soft computing method, namely least square support vector machine (LSSVM) modeling optimized with coupled simulated annealing (CSA) optimization technique was utilized. Statistical and graphical error analyses have been employed separately to evaluate the accuracy and reliability of the proposed model. Furthermore, this model performance has been compared with a newly developed multilayer perceptron artificial neural network (MLP-ANN) model. The obtained results have shown the more robustness, efficiency and reliability of the proposed CSA-LSSVM model in comparison with the developed MLP-ANN model for the prediction of permeability in heterogeneous carbonate reservoirs. Estimations were found to be within acceptable agreement with the actual field data of permeability, with a root mean square error of approximately 0.42 for CSA-LSSVM model in testing phase, and a R-squared value of 0.98. Additionally, these error parameters for MLP-ANN are 0.68 and 0.89 in testing stage, respectively.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼