RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Confidence intervals for the COVID-19 neutralizing antibody retention rate in the Korean population

        Apio, Catherine,Kamruzzaman, Md.,Park, Taesung Korea Genome Organization 2020 Genomics & informatics Vol.18 No.3

        The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic. No specific therapeutic agents or vaccines for COVID-19 are available, though several antiviral drugs, are under investigation as treatment agents for COVID-19. The use of convalescent plasma transfusion that contain neutralizing antibodies for COVID-19 has become the major focus. This requires mass screening of populations for these antibodies. While several countries started reporting population based antibody rate, its simple point estimate may be misinterpreted without proper estimation of standard error and confidence intervals. In this paper, we review the importance of antibody studies and present the 95% confidence intervals COVID-19 antibody rate for the Korean population using two recently performed antibody tests in Korea. Due to the sparsity of data, the estimation of confidence interval is a big challenge. Thus, we consider several confidence intervals using Asymptotic, Exact and Bayesian estimation methods. In this article, we found that the Wald method gives the narrowest interval among all Asymptotic methods whereas mid p-value gives the narrowest among all Exact methods and Jeffrey's method gives the narrowest from Bayesian method. The most conservative 95% confidence interval estimation shows that as of 00:00 on September 15, 2020, at least 32,602 people were infected but not confirmed in Korea.

      • KCI등재후보

        Updated confidence intervals for the COVID-19 antibody retention rate in the Korean population

        Kamruzzaman, Md.,Apio, Catherine,Park, Taesung Korea Genome Organization 2020 Genomics & informatics Vol.18 No.4

        With the ongoing rise of coronavirus disease 2019 (COVID-19) pandemic across the globe, interests in COVID-19 antibody testing, also known as a serology test has grown, as a way to measure how far the infection has spread in the population and to identify individuals who may be immune. Recently, many countries reported their population based antibody titer study results. South Korea recently reported their third antibody formation rate, where it divided the study between the general population and the young male youths in their early twenties. As previously stated, these simple point estimates may be misinterpreted without proper estimation of standard error and confidence intervals. In this article, we provide an updated 95% confidence intervals for COVID-19 antibody formation rate for the Korean population using asymptotic, exact and Bayesian statistical estimation methods. As before, we found that the Wald method gives the narrowest interval among all asymptotic methods whereas mid p-value gives the narrowest among all exact methods and Jeffrey's method gives the narrowest from Bayesian method. The most conservative 95% confidence interval estimation shows that as of 00:00 November 23, 2020, at least 69,524 people were infected but not confirmed. It also shows that more positive cases were found among the young male in their twenties (0.22%), three times that of the general public (0.051%). This thereby calls for the quarantine authorities' need to strengthen quarantine managements for the early twenties in order to find the hidden infected people in the population.

      • KCI등재후보

        Forecasting of the COVID-19 pandemic situation of Korea

        Goo, Taewan,Apio, Catherine,Heo, Gyujin,Lee, Doeun,Lee, Jong Hyeok,Lim, Jisun,Han, Kyulhee,Park, Taesung Korea Genome Organization 2021 Genomics & informatics Vol.19 No.1

        For the novel coronavirus disease 2019 (COVID-19), predictive modeling, in the literature, uses broadly susceptible exposed infected recoverd (SEIR)/SIR, agent-based, curve-fitting models. Governments and legislative bodies rely on insights from prediction models to suggest new policies and to assess the effectiveness of enforced policies. Therefore, access to accurate outbreak prediction models is essential to obtain insights into the likely spread and consequences of infectious diseases. The objective of this study is to predict the future COVID-19 situation of Korea. Here, we employed 5 models for this analysis; SEIR, local linear regression (LLR), negative binomial (NB) regression, segment Poisson, deep-learning based long short-term memory models (LSTM) and tree based gradient boosting machine (GBM). After prediction, model performance comparison was evelauated using relative mean squared errors (RMSE) for two sets of train (January 20, 2020-December 31, 2020 and January 20, 2020-January 31, 2021) and testing data (January 1, 2021-February 28, 2021 and February 1, 2021-February 28, 2021) . Except for segmented Poisson model, the other models predicted a decline in the daily confirmed cases in the country for the coming future. RMSE values' comparison showed that LLR, GBM, SEIR, NB, and LSTM respectively, performed well in the forecasting of the pandemic situation of the country. A good understanding of the epidemic dynamics would greatly enhance the control and prevention of COVID-19 and other infectious diseases. Therefore, with increasing daily confirmed cases since this year, these results could help in the pandemic response by informing decisions about planning, resource allocation, and decision concerning social distancing policies.

      • KCI등재후보

        Mathematical modeling of the impact of Omicron variant on the COVID-19 situation in South Korea

        Oh, Jooha,Apio, Catherine,Park, Taesung Korea Genome Organization 2022 Genomics & informatics Vol.20 No.2

        The rise of newer coronavirus disease 2019 (COVID-19) variants has brought a challenge to ending the spread of COVID-19. The variants have a different fatality, morbidity, and transmission rates and affect vaccine efficacy differently. Therefore, the impact of each new variant on the spread of COVID-19 is of interest to governments and scientists. Here, we proposed mathematical SEIQRDVP and SEIQRDV3P models to predict the impact of the Omicron variant on the spread of the COVID-19 situation in South Korea. SEIQEDVP considers one vaccine level at a time while SEIQRDV3P considers three vaccination levels (only one dose received, full doses received, and full doses + booster shots received) simultaneously. The omicron variant's effect was contemplated as a weighted sum of the delta and omicron variants' transmission rate and tuned using a hyperparameter k. Our models' performances were compared with common models like SEIR, SEIQR, and SEIQRDVUP using the root mean square error (RMSE). SEIQRDV3P performed better than the SEIQRDVP model. Without consideration of the variant effect, we don't see a rapid rise in COVID-19 cases and high RMSE values. But, with consideration of the omicron variant, we predicted a continuous rapid rise in COVID-19 cases until maybe herd immunity is developed in the population. Also, the RMSE value for the SEIQRDV3P model decreased by 27.4%. Therefore, modeling the impact of any new risen variant is crucial in determining the trajectory of the spread of COVID-19 and determining policies to be implemented.

      • KCI등재후보

        An analysis of the waning effect of COVID-19 vaccinations

        Bogyeom Lee,Hanbyul Song,Catherine Apio,Kyulhee Han,Jiwon Park,Zhe Liu,Hu Xuwen,Taesung Park Korea Genome Organization 2023 Genomics & informatics Vol.21 No.4

        Vaccine development is one of the key efforts to control the spread of coronavirus disease 2019 (COVID-19). However, it has become apparent that the immunity acquired through vaccination is not permanent, known as the waning effect. Therefore, monitoring the proportion of the population with immunity is essential to improve the forecasting of future waves of the pandemic. Despite this, the impact of the waning effect on forecasting accuracies has not been extensively studied. We proposed a method for the estimation of the effective immunity (EI) rate which represents the waning effect by integrating the second and booster doses of COVID-19 vaccines. The EI rate, with different periods to the onset of the waning effect, was incorporated into three statistical models and two machine learning models. Stringency Index, omicron variant BA.5 rate (BA.5 rate), booster shot rate (BSR), and the EI rate were used as covariates and the best covariate combination was selected using prediction error. Among the prediction results, Generalized Additive Model showed the best improvement (decreasing 86% test error) with the EI rate. Furthermore, we confirmed that South Korea's decision to recommend booster shots after 90 days is reasonable since the waning effect onsets 90 days after the last dose of vaccine which improves the prediction of confirmed cases and deaths. Substituting BSR with EI rate in statistical models not only results in better predictions but also makes it possible to forecast a potential wave and help the local community react proactively to a rapid increase in confirmed cases.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼