RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants

        Anita Sudhaik,Pankaj Raizada,Pooja Shandilya,정대용,임지호,Pardeep Singh 한국공업화학회 2018 Journal of Industrial and Engineering Chemistry Vol.67 No.-

        Graphitic carbon nitride (g-C3N4) as a fascinating visible light active semiconductor photocatalyst has medium band gap, non-toxic nature, stable chemical structure and high thermal stability. Recently, intensive researches are focused on photocatalytic activity of g-C3N4 for wastewater treatment. This review demonstrates latest progress in fabrication of graphitic carbon nitride C3N4 incorporated nanocomposite to explore photocatalytic ability for water purification. The g-C3N4-based nanocomposites were categorized as g-C3N4 metal-free nanocomposite, noble metals/g-C3N4 heterojunction, non-metal doped g-C3N4, transition and post transition metal based g-C3N4 nanocomposite. Apart from fabrication methods, we emphasized on elaborating the mechanism of activity enhancement during photocatalytic process.

      • KCI등재

        Current status on designing of dual Z-scheme photocatalysts for energy and environmental applications

        Rohit Kumar,Anita Sudhaik,Aftab Aslam Parwaz Khan,Pankaj Raizada,Abdullah M. Asiri,Satyabrata Mohapatra,Sourbh Thakur,Vijay Kumar Thakur,Pardeep Singh 한국공업화학회 2022 Journal of Industrial and Engineering Chemistry Vol.106 No.-

        Growing pollution and high energy demand are some of the major issues against humans. Waterpollution is one of the main problems created due to industrial waste and irresponsible human activities. Nowadays, photocatalysis is rising as an efficient alternative to overcome the energy requirement andwater purification, as it can use solar light as a source of energy. Due to some limitations of photocatalysts,such as photocarriers recombination, low surface area, and limited light absorption, modificationssuch as defect modifications, heterojunction can be employed. Out of all, Z-scheme heterojunction is aproficient way to overwhelm the limitation of pristine photocatalysts. To enhance the activity of Zschemephotocatalyst, even more, a dual Z-scheme photocatalytic scheme has been developed in whichtwo Z-scheme based charge transfer occur simultaneously on a ternary photocatalyst. In this review, wehave discussed the different types of dual Z-schemes along with their application in water purificationand finally, we have discussed the future prospects for further research.

      • KCI등재

        An overview of SnO2 based Z scheme heterojuctions: Fabrication, mechanism and advanced photocatalytic applications

        Akshay Chawla,Anita Sudhaik,Pankaj Raizada,Aftab Aslam Parwaz Khan,Archana Singh,Quyet Van Le,Van Huy Nguyen,Adem Sreedhar,Saad M. Alshehri,Abdullah M. Asiri,Pardeep Singh 한국공업화학회 2022 Journal of Industrial and Engineering Chemistry Vol.116 No.-

        Not just people, but all living species, desire a clean and green environment to live a happy and healthylife. However, in our ever-increasingly congested world, it is quite challenging. Excessive deforestation,factory smoke, various chemical compounds, agricultural chemicals, etc. all pollute our environmentseverely. Some of its adverse consequences include water contamination and a shortage of energy supplies. In recent times, photocatalysts have sparked tremendous attention as a means of addressing energydemands as well as environmental challenges (water pollution). For this, SnO2 and SnO2 based photocatalystshave gained a great attention due to its good photocatalytic ability. In the same way, SnO2-based Zschemephotocatalysts has extended significant interest to address these concerns due to its strong photocatalyticcharacteristics, energy savings, eco-friendliness, and lack of adverse health effects. Though, thephotocatalytic effectiveness of conventional SnO2 semiconductors, with their shortcomings, falls wellshort of the real requirements. The current review emphasizes on admirable properties and several synthesisprocesses of SnO2 which make it an ideal photocatalyst. This study also stresses the fundamentalshortcomings of SnO2 that restrict its utilization. The central section of this review is concentrated onSnO2-based Z-scheme photocatalysts and most recent significant research modification of Z-schemeSnO2-based photocatalysts. The photocatalytic applications of Z-scheme SnO2-based photocatalysts forpollutants removal, energy conversion, and water splitting are also summarized. In conclusion, we haveaddressed the challenges and future exploration of SnO2-based photocatalysts with a Z-scheme heterojunctiontype for pollutant degradation and energy conversion.

      • KCI등재

        BiFeO3-based Z scheme photocatalytic systems: Advances, mechanism, and applications

        Aastha Dhawan,Anita Sudhaik,Pankaj Raizada,Sourbh Thakur,Tansir Ahamad,Pankaj Thakur,Pardeep Singh,Chaudhery Mustansar Hussain 한국공업화학회 2023 Journal of Industrial and Engineering Chemistry Vol.117 No.-

        Hitherto, heed has been paid substantially to concoct potential photocatalysts to counter the issues ofenvironmental degradation and energy crises. Amongst the plethora of photocatalysts, BiFeO3 (BFO)based photocatalysts are blooming as a centre of attraction due to fine chemical stability, and easy extraction. Also owing to a 2.2–2.8 electron volt (eV) narrow bandgap, BFO to has turned into a competent photocatalystfor efficient visible light absorption. So, keeping in mind the advantages of BFO and reviewingprevious reports, the present review offers a deep overview of conventional heterojunctions andadvanced Z-scheme heterojunctions. The main focus of the review is on BFO-based Z-scheme heterojunctionsalong with photocatalytic mechanisms and various applications. The successful construction ofBFO-based Z-scheme heterojunction eliminates drawbacks of bare BFO photocatalysts such as shortlivedcharge carriers, and high recombination rate, and also enhances light absorption of the system asa whole. Because of spatially separated oxidation and reduction sites and efficacious charge migration,BFO-based Z-scheme heterojunctions are proficient contenders among photocatalytic materials. Therefore, BFO-based Z-scheme heterojunctions are aptly used nowadays, in various fields like pollutantdegradation, wastewater treatment, organic synthesis, hydrogen production, and treatment ofantibiotics.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼