RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Grant management procedure for energy saving TDM-PONs

        Alaelddin, Fuad Yousif Mohammed,Newaz, S.H. Shah,AL-Hazemi, Fawaz,Choi, Jun Kyun Elsevier 2018 Optical fiber technology Vol.40 No.-

        <P><B>Abstract</B></P> <P>In order to minimize energy consumption in Time Division Multiplexing-Passive Optical Network (TDM-PON), IEEE and ITU-T have mandated sleep mode mechanism for Optical Network Units (ONUs) in the latest TDM-PON standards (e.g. IEEE P1904.1 SIEPON, ITU-T G.sup45). The sleep mode mechanism is a promising mean for maximizing energy saving in an ONU. An ONU in sleep mode flips between <I>sleep</I> and <I>active state</I> depending on the presence or absent of upstream and downstream frames. To ensure Quality of Service (QoS) of upstream frames, the recent TDM-PON standards introduced an early wake-up mechanism, in which an ONU is forced to leave the <I>sleep state</I> on upstream frame arrival. When the Optical Line Terminal (OLT) of a TDM-PON allows early wake-up of its connected ONUs, it allocates gratuitous grants for the sleeping ONUs along with allocating upstream grants for the ONUs in <I>active state</I>. Note that, the gratuitous grants control message sent periodically by the OLT on Inter-Gratuitous grant Interval (IGI) time. After leaving <I>sleep state</I> due to the arrival of upstream frame, the ONU uses its allocated gratuitous grant to send a control message mentioning the amount of upstream bandwidth (upstream grant) required in order to forward the remaining frames in its buffer. However, the existing early wake-up process of ONU can lead to increase the energy consumption of an ONU. It is because of the ONU wakes-up immediately from the <I>sleep state</I> on arrival of the upstream frame, but even so, it needs to wait for forwarding the frame until its allocated gratuitous grant period, resulting in spending energy unnecessarily. In addition, current energy saving solution for TDM-PONs do not provide a clear solution on how to manage different types of grants (e.g. listening grant, upstream transmission grant) within a Dynamic Bandwidth Allocation (DBA) polling cycle. To address this problem, we propose a state-of-art Grant Management Procedure (GMP) in order to maximize energy saving in a TDM-PON with sleep mode enabled ONUs. GMP contributes in defining the location of the different types of grants during a DBA polling cycle. Furthermore, GMP devises a mechanism so as to allow an ONU to predict its assigned gratuitous grant control message arrival time, thereby allowing an ONU to remain its transceiver unit powered off until the arrival period of the next gratuitous grant control message, increasing the energy saving of the ONU. Results show that, with the increment of IGI, the energy saving performance of an ONU with GMP increases noticeably in compare to a conventional ONU (an ONU that does not use GMP) without imposing any additional upstream frame delay.</P> <P><B>Highlights</B></P> <P> <UL> <LI> First effort dedicated to arrange different types of grants during a DBA cycle. </LI> <LI> We proposed a state-of-art Grant Management Procedure (GMP). </LI> <LI> GMP maximizes the energy saving in TDM-PONs with sleep mode enabled ONUs. </LI> <LI> ONUs utilizing GMP can predict gratuitous grant control message arrival time. </LI> </UL> </P>

      • Early wake-up decision algorithm for ONUs in TDM-PONs with sleep mode

        Mohammed, Alaelddin Fuad Yousif,Newaz, S. H. Shah,Uddin, Mohammad Rakib,Lee, Gyu Myoung,Choi, Jun Kyun IEEE 2016 Journal of optical communications and networking Vol.8 No.5

        <P>Recent IEEE and ITU-T standards for time division multiplexing-passive optical networks (TDM-PONs) with sleep mode recommend that the optical line terminal (OLT) in a TDM-PON should be in charge of invoking the optical network units (ONUs) to move into the sleep state in the absence of frames. It is considered that, upon upstream frame arrival, a sleeping ONU can leave the sleep state, in which an ONU turns off its transmitter or both its transmitter and receiver, immediately, prior to its assigned sleep interval length. In this paper, we refer to this approach as immediate early wake-up (IMEW). According to the standards, the OLT may or may not allow an ONU to trigger an early wake-up function (EWF) upon the upstream frames' arrival. If the OLT does not allow the EWF [we refer to this as not support early wake-up (NSEW)], an ONU should stay in the sleep state during its assigned sleep duration and buffer all the upstream frames while it is in this state. In IMEW, the upstream frames experience a small delay, but the ONU's energy consumption increases remarkably. Conversely, in NSEW, an ONU consumes less energy compared to IMEW at the price of increasing the upstream frame delay and the possibility of having its buffer overflow. In this paper, the limitations of IMEW and NSEW have motivated us to propose a novel early wake-up decision (EWuD) algorithm that aims at meeting the upstream frame delay requirement while reducing the ONUs' energy consumption as much as possible. The role of the EWuD algorithm is to select an appropriate time for triggering EWF, taking into consideration two factors: 1) buffer overflow probability and 2) delay requirement violation of upstream frames. We evaluate EWuD performances using our TDM-PON OPNET modular-based simulation model under a wide range of scenarios. The findings demonstrate that our proposed EWuD can successfully meet the delay requirements of all upstream frames while reducing the ONUs' energy consumption significantly.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼