RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Dynamic analysis of a laminated composite beam under harmonic load

        Akbas, S.D. Techno-Press 2020 Coupled systems mechanics Vol.9 No.6

        Dynamic responses of a laminated composite cantilever beam under a harmonic are investigated in this study. The governing equations of problem are derived by using the Lagrange procedure. The Timoshenko beam theory is considered and the Ritz method is implemented in the solution of the problem. The algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of dynamic problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of load parameter, the fiber orientation angles and stacking sequence of laminas on the dynamic responses of the laminated beam are investigated.

      • Nonlinear static analysis of functionally graded porous beams under thermal effect

        Akbas, Seref D. Techno-Press 2017 Coupled systems mechanics Vol.6 No.4

        This paper deals with the nonlinear static deflections of functionally graded (FG) porous under thermal effect. Material properties vary in both position-dependent and temperature-dependent. The considered nonlinear problem is solved by using Total Lagrangian finite element method within two-dimensional (2-D) continuum model in the Newton-Raphson iteration method. In numerical examples, the effects of material distribution, porosity parameters, temperature rising on the nonlinear large deflections of FG beams are presented and discussed with porosity effects. Also, the effects of the different porosity models on the FG beams are investigated in temperature rising.

      • Modal analysis of viscoelastic nanorods under an axially harmonic load

        Akbas, Seref D. Techno-Press 2020 Advances in nano research Vol.8 No.4

        Axially damped forced vibration responses of viscoelastic nanorods are investigated within the frame of the modal analysis. The nonlocal elasticity theory is used in the constitutive relation of the nanorod with the Kelvin-Voigt viscoelastic model. In the forced vibration problem, a cantilever nanorod subjected to a harmonic load at the free end of the nanorod is considered in the numerical examples. By using the modal technique, the modal expressions of the viscoelastic nanorods are presented and solved exactly in the nonlocal elasticity theory. In the numerical results, the effects of the nonlocal parameter, damping coefficient, geometry and dynamic load parameters on the dynamic responses of the viscoelastic nanobem are presented and discussed. In addition, the difference between the nonlocal theory and classical theory is investigated for the damped forced vibration problem.

      • Forced vibration analysis of functionally graded sandwich deep beams

        Akbas, Seref D. Techno-Press 2019 Coupled systems mechanics Vol.8 No.3

        This paper presents forced vibration analysis of sandwich deep beams made of functionally graded material (FGM) in face layers and a porous material in core layer. The FGM sandwich deep beam is subjected to a harmonic dynamic load. The FGM in the face layer is graded though the layer thickness. In order to get more realistic result for the deep beam problem, the plane solid continua is used in the modeling of The FGM sandwich deep beam. The equations of the problem are derived based the Hamilton procedure and solved by using the finite element method. The novelty in this paper is to investigate the dynamic responses of sandwich deep beams made of FGM and porous material by using the plane solid continua. In the numerical results, the effects of different material distributions, porosity coefficient, geometric and dynamic parameters on the dynamic responses of the FGM sandwich deep beam are investigated and discussed.

      • Bending of a cracked functionally graded nanobeam

        Akbas, Seref Doguscan Techno-Press 2018 Advances in nano research Vol.6 No.3

        In this study, static bending of an edge cracked cantilever nanobeam composed of functionally graded material (FGM) subjected to transversal point load at the free end of the beam is investigated based on modified couple stress theory. Material properties of the beam change in the height direction according to exponential distributions. The cracked nanobeam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-nanobeams connected through a massless elastic rotational spring. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Euler-Bernoulli beam theory by using finite element method. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the static deflections of the edge cracked FGM nanobeams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and different material distributions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked FGM nanobeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

      • Forced vibration analysis of a fiber reinforced composite beam

        Akbas, S.D. Techno-Press 2021 Advances in materials research Vol.10 No.1

        In this study, forced vibration analysis of a fiber reinforced composite cantilever beam is investigated under a harmonic load. In the beam model, the Timoshenko beam theory is used. The governing equations of problem are derived by using the Lagrange procedure. In the solution of the problem the Ritz method is used and algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of the forced vibration problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of fibre orientation angles, the volume fraction and dynamic parameters on the forced vibration response of fiber reinforced composite beam are presented and discussed.

      • SCIESCOPUS

        Geometrically nonlinear analysis of functionally graded porous beams

        Akbas, Seref D. Techno-Press 2018 Wind and Structures, An International Journal (WAS Vol.27 No.1

        In this paper, geometrically non-linear analysis of a functionally graded simple supported beam is investigated with porosity effect. The material properties of the beam are assumed to vary though height direction according to a prescribed power-law distributions with different porosity models. In the nonlinear kinematic model of the beam, the total Lagrangian approach is used within Timoshenko beam theory. In the solution of the nonlinear problem, the finite element method is used in conjunction with the Newton-Raphson method. In the study, the effects of material distribution such as power-law exponents, porosity coefficients, nonlinear effects on the static behavior of functionally graded beams are examined and discussed with porosity effects. The difference between the geometrically linear and nonlinear analysis of functionally graded porous beam is investigated in detail. Also, the effects of the different porosity models on the functionally graded beams are investigated both linear and nonlinear cases.

      • SCIESCOPUS

        Geometrically nonlinear analysis of a laminated composite beam

        Akbas, Seref D. Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.1

        The objective of this work is to analyze geometrically nonlinear static analysis a simply supported laminated composite beam subjected to a non-follower transversal point load at the midpoint of the beam. In the nonlinear model of the laminated beam, total Lagrangian finite element model of is used in conjunction with the Timoshenko beam theory. The considered non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. In the numerical results, the effects of the fiber orientation angles and the stacking sequence of laminates on the nonlinear deflections and stresses of the composite laminated beam are examined and discussed. Convergence study is performed. Also, the difference between the geometrically linear and nonlinear analysis of laminated beam is investigated in detail.

      • Forced vibration analysis of cracked functionally graded microbeams

        Akbas, Seref D. Techno-Press 2018 Advances in nano research Vol.6 No.1

        Forced vibration analysis of a cracked functionally graded microbeam is investigated by using modified couple stress theory with damping effect. Mechanical properties of the functionally graded beam change vary along the thickness direction. The crack is modelled with a rotational spring. The Kelvin-Voigt model is considered in the damping effect. In solution of the dynamic problem, finite element method is used within Timoshenko beam theory in the time domain. Influences of the geometry and material parameters on forced vibration responses of cracked functionally graded microbeams are presented.

      • Nonlinear thermal displacements of laminated composite beams

        Akbas, Seref D. Techno-Press 2018 Coupled systems mechanics Vol.7 No.6

        In this paper, nonlinear displacements of laminated composite beams are investigated under non-uniform temperature rising with temperature dependent physical properties. Total Lagrangian approach is used in conjunction with the Timoshenko beam theory for nonlinear kinematic model. Material properties of the laminated composite beam are temperature dependent. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. The distinctive feature of this study is nonlinear thermal analysis of Timoshenko Laminated beams full geometric non-linearity and by using finite element method. In this study, the differences between temperature dependent and independent physical properties are investigated for laminated composite beams for nonlinear case. Effects of fiber orientation angles, the stacking sequence of laminates and temperature on the nonlinear displacements are examined and discussed in detail.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼