RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Month and Season of Birth as a Risk Factor for Alzheimer's Disease: A Nationwide Nested Case-control Study

        Tolppanen, Anna-Maija,Ahonen, Riitta,Koponen, Marjaana,Lavikainen, Piia,Purhonen, Maija,Taipale, Heidi,Tanskanen, Antti,Tiihonen, Jari,Tiihonen, Miia,Hartikainen, Sirpa The Korean Society for Preventive Medicine 2016 Journal of Preventive Medicine and Public Health Vol.49 No.2

        Objectives: Season of birth, an exogenous indicator of early life environment, has been related to higher risk of adverse psychiatric outcomes but the findings for Alzheimer's disease (AD) have been inconsistent. We investigated whether the month or season of birth are associated with AD. Methods: A nationwide nested case-control study including all community-dwellers with clinically verified AD diagnosed in 2005 to 2012 (n=70 719) and up to four age- sex- and region of residence-matched controls (n=282 862) residing in Finland. Associations between month and season of birth and AD were studied with conditional logistic regression. Results: Month of birth was not associated with AD (p=0.09). No strong associations were observed with season (p=0.13), although in comparison to winter births (December-February) summer births (June-August) were associated with higher odds of AD (odds ratio, 1.03; 95% confidence interval, 1.00 to 1.05). However, the absolute difference in prevalence in winter births was only 0.5% (prevalence of those born in winter were 31.7% and 32.2% for cases and controls, respectively). Conclusions: Although our findings do not support the hypothesis that season of birth is related to AD/dementia risk, they do not invalidate the developmental origins of health and disease hypothesis in late-life cognition. It is possible that season does not adequately capture the early life circumstances, or that other (postnatal) risk factors such as lifestyle or socioeconomic factors overrule the impact of prenatal and perinatal factors.

      • KCI등재

        Month and Season of Birth as a Risk Factor for Alzheimer’s Disease: A Nationwide Nested Case-control Study

        Anna-Maija Tolppanen,Riitta Ahonen,Marjaana Koponen,Piia Lavikainen,Maija Purhonen,Heidi Taipale,Antti Tanskanen,Jari Tiihonen,Miia Tiihonen,Sirpa Hartikainen 대한예방의학회 2016 Journal of Preventive Medicine and Public Health Vol.49 No.2

        Objectives: Season of birth, an exogenous indicator of early life environment, has been related to higher risk of adverse psychiatric outcomes but the findings for Alzheimer’s disease (AD) have been inconsistent. We investigated whether the month or season of birth are associated with AD. Methods: A nationwide nested case-control study including all community-dwellers with clinically verified AD diagnosed in 2005 to 2012 (n=70 719) and up to four age- sex- and region of residence-matched controls (n=282 862) residing in Finland. Associations between month and season of birth and AD were studied with conditional logistic regression. Results: Month of birth was not associated with AD (p=0.09). No strong associations were observed with season (p=0.13), although in comparison to winter births (December-February) summer births (June-August) were associated with higher odds of AD (odds ratio, 1.03; 95% confidence interval, 1.00 to 1.05). However, the absolute difference in prevalence in winter births was only 0.5% (prevalence of those born in winter were 31.7% and 32.2% for cases and controls, respectively). Conclusions: Although our findings do not support the hypothesis that season of birth is related to AD/dementia risk, they do not invalidate the developmental origins of health and disease hypothesis in late-life cognition. It is possible that season does not adequately capture the early life circumstances, or that other (postnatal) risk factors such as lifestyle or socioeconomic factors overrule the impact of prenatal and perinatal factors.

      • Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range

        Stolzenburg, Dominik,Fischer, Lukas,Vogel, Alexander L.,Heinritzi, Martin,Schervish, Meredith,Simon, Mario,Wagner, Andrea C.,Dada, Lubna,Ahonen, Lauri R.,Amorim, Antonio,Baccarini, Andrea,Bauer, Paulu National Academy of Sciences 2018 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.115 No.37

        <▼1><P><B>Significance</B></P><P>Aerosol particles can form and grow by gas-to-particle conversion and eventually act as seeds for cloud droplets, influencing global climate. Volatile organic compounds emitted from plants are oxidized in the atmosphere, and the resulting products drive particle growth. We measure particle growth by oxidized biogenic vapors with a well-controlled laboratory setup over a wide range of tropospheric temperatures. While higher temperatures lead to increased reaction rates and concentrations of highly oxidized molecules, lower temperatures allow additional, but less oxidized, species to condense. We measure rapid growth over the full temperature range of our study, indicating that organics play an important role in aerosol growth throughout the troposphere. Our finding will help to sharpen the predictions of global aerosol models.</P></▼1><▼2><P>Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes [FORMULA OMISSION]10 nm, where coagulation losses to larger aerosol particles are greatest. Recent results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from [FORMULA OMISSION]C to [FORMULA OMISSION]C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We show that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.</P></▼2>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼