RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Gold-Silver Mineralization of the Geojae Area

        최선규,지세정,윤성택,고용권,유재신,Choi, Seon-Gyu,Chi, Se-Jung,Yun, Seong-Taek,Koh, Yong-Kwon,Yu, Jae-Shin The Korean Society of Economic and Environmental G 1989 자원환경지질 Vol.22 No.4

        경남거제지역 금(金)-은광상(銀鑛床)들은 후기 백악기 안산암류와 화강섬록암(83 m.y.)내의 열극을 충진한 함금(含金)-은(銀) 열수맥상(熱水脈狀) 광체로 구성된다. 열수광화작용(熱水鑛化作用)은 구조운동에 의하여 시기적으로 3회에 걸쳐 진행되었다. 초기 제$370^{\circ}C$의 고온에서 후기 $200^{\circ}C$에 이르는 제 I, II 광화기(鑛化期)에서는 각기 상이한 열수계(熱水系)에 의하여 석영, 유화물이 침전하였으며, $320^{\circ}C$를 전후로 하여 광화류체(鑛化流體)의 비담(沸膽)현상이 일어났다. 제 I, II 광화작용(鑛化作用)시의 압력은 <100기압이고, 심도는 500~1,250m였다. 금(金)-은(銀)의 주광화시기(主鑛化時期)인 광화(鑛化) I 기(期)의 공생광물에 대한 유체포유물(流體包有物) 및 광물열수학적(鑛物熱水學的) 연구에 의하면, 황철석, 섬아연석, 황동석은 $290^{\circ}C$ 이상의 고온에서 비담작용(沸膽作用)과 동시에 정출하였고, 사면동석, 에렉트렘, 스튜자이트는 금(金)-유황종(硫黃種)의 농도가 $10^{-3}{\sim}10^{-4}$molal, 상당염농도(相當鹽濃度)가 2~6wt.% NaCl인 광화유체(鑛化流體)로부터 $220{\sim}260^{\circ}C$, 유황 및 산소분압이 각각 $10^{-11.8}{\sim}10^{-14}$, $10^{-35}{\sim}10^{-36}$ atm인 물리 화학적 환경하에서 침전하였다. 균질화(均質化) 온도와 염농도(相當鹽濃度)와의 관계는 천수류입(天水流入)에 의한 광화류체(鑛化流體)의 냉각(冷却) 및 희석(稀釋)작용이 광석광물 침전의 주된 메키니즘이었음을 지시해 주며, 유체내(流體內) 환원(還元) 유황종(硫黃種)($H_2S$)의 감소에 따른 금류화복합체(金硫化複合體)($Au(HS)_2$) 의 파괴로 금(金)의 침전이 유도되었으리라 사료된다. 유황 및 탄소, 산소 안정동위원소(安定同位元素) 연구(硏究)결과, 광화류체내(鑛化流體內)의 유황 및 탄소는 심부화성(深部火成)기원이었고, 방해석의 산소 안정동위원소(安定同位元素)값으로부터 열수계(熱水系)에서 천수(天水)가 지배적인 역할을 하였으리라 사료된다. The electrum-silver-sulfide mineralization of the Geojae island area was deposited in three stages (I, II, and carbonate) of quartz and calcite veins that crosscut Late Cretaceous volcanic rocks and granodiorite(83 m.y.). Stages I and II were terminated by the onset of fractunng and breCCIation events. Fluid inclusion data suggest that the gold-sulfide-bearing stages I and II each evolved from an initial high temperature( near $370^{\circ}C$) to a later low temperature(near $200^{\circ}C$). Each of those stages represented a separate mineralizing system which cooled prior to the onset of the next stage. The relationship between homogenization temperature and salinity in stages I and II suggests a complex history of boiling, cooling and dilution. Evidence of boiling indicates a pressure of < 100 bars, corresponding to a depth of 500 to 1,250m assummg hthostatlc and hydrostatic pressure regimes, respectively. Fluid inclusion and mineralogical evidence suggest that the electrum-silver mineralization was deposited at a temperature of $220-260^{\circ}C$ from ore fluids with salinities between 1.9 and 8.1 equivalent wt.% NaCl. Total sulfur concentration is estimated to be $10^{-3}$ to $10^{-4}$ molal. The estimated $fs_2$ and $fo_2$ range from $10^{-11.8}$ to $10^{-14}$ atm and $10^{-35}$ to $10^{-36}$ atm, respectively. The chemical conditions indicate that the dominant sulfur species in the ore forming fluids was a reduced form($H_2S$). Rapid cooling and dilution of ore-forming fluids by mixing with less-evolved meteoric waters led to gold-silver deposition through the breakdown of the bisulfide complex($Au(HS)_2$) as the activity of $H_2S$ decreased.

      • KCI등재

        강원도 옥계 금광상에 관한 광물학적·지화학적 연구

        최선규,최상훈,이현구,Choi, Seon-Gyu,Choi, Sang-Hoon,Lee, Hyun Koo 대한자원환경지질학회 1997 자원환경지질 Vol.30 No.1

        Gold mineralization of the Ogkye gold mine was deposited mainly in quartz veins up to 150 cm wide which occupy fissures in Cambrian Pungchon limestone. Ore minerals are relatively simple as follows: pyrite, arsenopyrite, pyrrhotite, sphalerite, electrum and galena. On the basis of the Ag/Au ratio on ore grades, mode of occurrence and assoicated mineral assemblages, the Ogkye gold deposit can be classified as pyrite-type gold deposit (Group IIB). Fluid inclusion data indicate that ore minerals were deposited between $400^{\circ}$and $230^{\circ}C$ from relatively dilute fluids (0.2 to 7.3 wt.% eq. NaCl) containing $CO_2$. The ore mineralization resulted from a complex history of $CO_2$ effervescence and local concomitant boiling coupled with cooling and dilution of ore fluids. Gold deposition was likely a result of decrease of sulfur activity caused by sulfide deposition and/or $H_2S$ loss accompanying fluid unmixing. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=3.5{\sim}5.9$‰) are consistent with ${\delta}^{34}S_{H_2S}$ value of 4.8 to 6.1‰, suggesting mainly an igneous source of sulfur partially mixed with wall-rock sulfur.

      • 토양환경 변화와 접지저항의 상관관계 분석을 통한 접지 저항값 예측 연구

        최선규,이규영,문영호,심건보,Choi, Sun-Kyu,Lee, Kyu-Young,Moon, Young-Ho,Shim, Keon-Bo 한국전력공사 2020 KEPCO Journal on electric power and energy Vol.6 No.1

        The purpose of this paper is to improve the grounding point measurement method for the maintenance of the earth resistance of the distribution line. This study defines the correlation among humidity of the soil, the earth resistivity and the grounding resistance. Based on the results of the study, the grounding resistance value measurement should be limited to the location where the earth resistivity change is large, and the measurement time and cost can be greatly reduced.

      • KCI등재

        충청도(忠淸道) 일원(一圓)의 금(金)·은(銀)광상(鑛床)에 대한 광물학적(鑛物學的) 연구(硏究)

        최선규,박노영,홍세선,Choi, Seon Gyu,Park, No Young,Hong, Sei Sun 대한자원환경지질학회 1988 자원환경지질 Vol.21 No.3

        A large number of gold and/or silver-bearing quartz veins occur in or near Mesozoic granite batholith elongated in a NE-SW direction within the Chungcheong Province. Precambrian schists and gneisses, and Jurassic and Cretaceous granitic rocks serve as hosts for gold and/or silver deposits. On the basis of Ag/Au total production and ore grade ratio, 15 mines may be divided into three major groups: gold-dominant deposits, gold-silver deposits, and silver-dominant deposits. The chemical composition of electrum from skarn deposit (Geodo mine), alaskite-type deposit (Geumjeong mine) and 15 vein deposits was summarized. It was found that the Au content of electrum for vein deposits ranging from 5.2 to 86.5 is lower than that for skarn and alaskite deposits. Among 15 vein deposits, the composition of electrum associated with pyrrhotite is relatively high and has a narrow range of 40.8 to 86.5 atomic % Au, but the Au content of electrum with pyrite is in range of 5.2 to 82.8 atomic %, and is clearly lower than that with pyrrhotite. The grouping of ages for these mines indicates that gold and/or silver mineralizations occurred during two periods in the Mesozoic. Daebo igneous activities are restricted to gold mineralization in the range of 158 to 133 Ma, whereas Bulgugsa igneous activities are related to gold and/or silver mineralization ranging from 108 to 71 Ma. Generally speaking, Jurassic gold-dominant veins have many common characteristics; notably prominent association with pegmatites, simply massive vein morphology, high fineness in the ore concentrates, rarity of silver minerals, and a distinctively simple mineralogy, including sphalerite, galena, chalcopyrite, pyrrhotite and/or pyrite. Although individual deposits exhibit widely differing diversity, Cretaceous gold-silver and silver-dominant veins are characterized by features such as complex vein, low to medium fineness in the ore concentrates and abundance of silver minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver.

      • KCI등재

        Contrasting Styles of Gold and Silver Mineralization in the Central and Southeastern Korea

        최선규,최상훈,Choi, Seon-Gyu,Choi, Sang-Hoon The Korean Society of Economic and Environmental G 1995 자원환경지질 Vol.28 No.6

        한반도 중부지역과 동남부지역에 분포하는 금-은 광상들의 광화작용은 쥐라기 중기로부터 백악기 말기에 걸쳐서 진행되었으며, 이들 광상은 유행별로 산출지역 및 산출시기에 연관된 지질학적 지화학적 생성환경의 차이를 나타내고 있다. 중부지역 금-은 광상은 북동-남서의 방향성을 갖고 산출분포하는 중생대 화강암류 및 주변 선캠브리아기 변성암류내에 분포하지만, 동남부지역 금-은 광상은 백악기 퇴적암 및 화산암류내에 주로 배태되고 있다. 이는 한반도 대표적인 화성활동인 쥐라지 대보화성활동 및 백악기 불국사 화성활동과 각각 밀접한 성인적 연관성을 시사하고 있다. 이러한 각 광상들의 광화작용 특성(광물공생관계, 조직, 구조 등)과 연대측정결과 및 지질학적 분포특성은 쥐라가 중기로부터 백악기 말기에 이르기까지 광상형성과 연관된 열수유체의 성인적 차이를 의미하고 있다. 즉, 쥐라기로부터 초기 백악기에는 금광단일형 광상의 광화작용이 우세하게 진행되었으나, 후기 백악기에 이르면서 금-은혼합형광상 및 은광단일형 광상의 광화작용이 우세하게 야기되었음을 알 수 있다. 쥐라기 금광단일형 광상들은 괴상의 맥상 산출특성 및 단순한 광석 광불 공생관계를 보여주는 단성광맥으로 높은 fineness 값을 나타내지만, 백악기 금-은혼합형 광상과 은광단일형 광상은 다양하고 복잡한 구조 및 조치특성 갖는 복성 광맥내에 함은황인 및 황화광물과 함은tellurides 및 자연은 등을 포함하는 등 상대적으로 복잡한 광석광물 공생과계를 보여준다. 한편 황화광물의 지질온도계와 유체포유물 연구의 결과등에 의하면 백악기 금-은혼합형 광상과 은광단일형 광상은 천부(<0.5 kb)에서 천수가 우세한 광화유체로부터 $200^{\circ}{\sim}350^{\circ}C$ 온도조건하에서 주된 광화작용이 진행되었지만, 쥐라기 금광단일형 광상은 마그마기원의 열수용액으로부터 고온$(300^{\circ}{\sim}500^{\circ}C)$ 및 고압$({\approx}4-5kb)$의 생성환경하에서 광화작용이 진행되었음을 시사한다. Two distinct precious-metal mineralizations actively occur at central and southeastern Korea which display consistent relationships among geologic, geochemical and genetic environments. A large number of preciousmetal vein deposits in the central Korea occur in or near Mesozoic granite batholiths elongated in a NE-SW direction. Whereas, gold and/or silver deposits in the southeastern Korea occur within Cretaceous volcanic and sedimentary rocks. However, most of the precious-metal deposits in the southeastern Korea show characteristics of the silver-rich deposits than the gold-rich deposits in the central Korea. Two epochs of main igneous activities are recognized: a) Jurassic Daebo igneous activity between 121 and 183 Ma, and b) Cretaceous Bulgugsa igneous activity between 60 and 110 Ma. Precious-metal mineralization took place between 158 and 71 Ma, coinciding with portions of the two magmatic activities. Contrasts in the style of mineralization, together with radiometric age data and differences in geologic settings reflect the genetically variable natures of hydrothermal activities from middle Jurassic to late Cretaceous time. The compilation and re-evaluation of these data suggest that the genetic types of hydrothermal precious-metal vein deposits in the central and southeastern Korea varied with time. The Jurassic and early Cretaceous mineralizations are characterized by the Au-dominant type, but tend to change to the Au-Ag and/or Ag-dominant types at late Cretaceous. The Jurassic Au-dominant deposits commonly show several characteristics; prominent associations with pegmatites, simple massive vein morphologies, high fmeness values in ore-concentrating parts, and a distinctively simple ore mineralogy such as Fe-rich sphalerite, galena, chalcopyrite, Au-rich electrum, pyrrhotite and/or pyrite. The Cretaceous precious-metal deposits are generally characterized by some- features such as complex vein morphologies, low to medium fmeness values in the ore concentrates, and abundance of ore minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver. Mineralogical and fluid inclusion studies indicate that the Jurassic Au-dominant deposits in the central area were formed at the high temperature (about $300^{\circ}$ to $500^{\circ}C$) and pressure (about 4 to 5 kbars), whereas mineralizations of the Cretaceous Au-Ag and Ag-dominant deposits were occurred at the low temperature (about $200^{\circ}$ to $350^{\circ}C$) and pressure (<0.5 kbars) from the ore fluids containing more amounts of less-evolved meteoric waters.

      • KCI등재

        한국 중부지역 금은광상산 섬아연석의 조성변화와 성인적 특성

        최선규,Choi, Seon-Gyu 대한자원환경지질학회 1993 자원환경지질 Vol.26 No.2

        Chemical compositions of sphalerites from 25 gold and/or silver deposits in central Korea were obtained with an electron probe microanalyzer. The FeS contents of sphalerites depend generally upon the assemblage of associated iron sulphides (pyrite and/or pyrrhotite) especially. The sphalerites coexisting with pyrrhotite show a narrow range of FeS variation, but the sphalerites associated with pyrite and/or pyrrhotite have the variable and wide range of FeS contents. The sphalerites from Au-dominant deposits, which vary considerably in each deposit, are generally characterized by high CdS content and low MnS content. On the contrary, the sphalerites from Ag-dominant and Au-Ag deposits tend to be characterized by relatively high MnS and very low CdS content. Based upon the mineralogy, fluid inclusions and stable isotope data, the Au-dominant deposits were formed under higher temperature and deeper depth than the Ag-dominant and Au-Ag deposits. The results suggest the possibility that the diverse sources and evolution of ore fluid at the time of ore deposition are responsible for the deposition of Cd and Mn components in sphalerites.

      • KCI등재

        Compositional Variation of Arsenopyrites in Arsenic and Polymetallic Ores from the Ulsan Mine, Republic of Korea, and their Application to a Geothermometer

        최선규,정재일,이마이 나오야,Choi, Seon-Gyu,Chung, Jae-Ill,Imai, Naoya The Korean Society of Economic and Environmental G 1986 자원환경지질 Vol.19 No.3

        울산(蔚山)의 철 중석 스카른광상에서 산출되는 유비철석(硫砒鐵石)은 그의 산출상태(産出狀態) 광물공생관계(鑛物共生關係) 화학조성(化學組成)을 근거로 세 가지 유형으로 구분된다. 유비철석(硫砒鐵石) I 은 다금속광화작용(多金屬鑛化作用) 초기에 정출된 것으로 주로 스카른대 내에서 산점상으로 분포하며, Ni-Fe-Co계 유화물과 밀접한 공생관계를 보여준다. 유비철석(硫砒鐵石) I 의 화학조성은 Ni, Co의 함량이 현저하게 높고 As/S(원자비(原子比))>1으로 과잉(過剩)의 비소를 함유한다. 유비철석(硫砒鐵石) II는 Cu 또는 As 광석중에서 산출되며, 비독사석 휘창연석 비스무스 황동석 섬아연석과 밀접한 공생관계를 보여준다. 유비철석(硫砒鐵石) II의 화학조성은 Ni, Co의 함량이 극히 미량이며, As/S>1으로 과잉(過剩)의 비소를 함유한다. 유비철석(硫砒鐵石) III은 최후기 열수광맥 형성시기에 정출되었으며, 황철석 방연석 섬아연석 자류철석과 밀접한 공생관계(共生關係)를 보여준다. 유비철석(硫砒鐵石) III의 화학조성(化學組成)은 $$As/S1{\leq_-}1$$로 과잉(過剩)의 S를 함유한다. 유비철석(硫砒鐵石) I 은 Ni, Co의 함유량이 1%이상이므로 지질온도계(地質溫度計)로 사용할 수 없지만, 유비철석(硫砒鐵石) II 는 비스무스-휘창연석의 공생관계(共生關係)를 보여 주고 있으므로, 이를 Kretschmar and Scott (1976)에 의한 $1/T-f(S_2)$도에 적용시켜보면 유비철석(硫砒鐵石) II의 정출환경은 $T=460{\sim}470^{\circ}C$, log $f(S_2)=-7.4{\sim}7.0$이고, 유비철석(硫砒鐵石) III의 정출환경은 $T=320{\sim}440^{\circ}C$, log $f(S_2)=-9.0{\sim}7.0$으로 추정된다. Arsenopyrite in arsenic and polymetallic ores from calcic Fe-W skarn deposit of the Ulsan mine, Republic of Korea, has been investigated by means of electron microprobe analysis and X-ray diffractometry. As a result, it is revealed that the Ulsan arsenopyrite may be classified into the following three species with different generation on the basis of its mode of occurrence, chronological order during polymetallic mineralization and chemical composition; arsenopyrites I, II and III. 1) Arsenopyrite I-(Ni, Co)-bearing species belonging to the oldest generation, which has crystallized together with (Ni, Co)-arsenides and -sulpharsenides in the early stage of polymetallic mineralization. In rare cases, it contains a negligible amount of antimony. It occurs usually as discrete grains with irregular outline, showing rarely subhedral form, and is diffused in skarn zone. The maximum contents of nickel and cobalt are 10.04 Ni and 2.45 Co (in weight percent). Occasionally, it shows compositional zoning with narrow rim of lower (Ni+Co) content. 2) Arsenopyrite II-arsenian species, in which (Ni+Co) content is almost negligible, may occur widely in arsenic ores, and its crystallization has followed that of arsenopyrite I. It usually shows subhedral to euhedral form and is closely associated with $l{\ddot{o}}llingite$, bismuth, bismuthinite, chalcopyrite, sphalerite, bismuthian tennantite, etc. It is worthy of note that arsenopyrite II occasionally contains particles consisting of both bismuth and bismuthinite. 3) Arsenopyrite III-(Ni, Co)-free, S-excess and As-deficient species is close to the stoichiometric composition, FeAsS. It occurs in late hydrothermal veins, which cut clearly the Fe-W ore pipe and the surrounding skarn zone. It shows euhedral to subhedral form, being extremely coarse-grained, and is closely associated with pyrite, "primary" monoclinic pyrrhotite, galena, sphalerite, etc. Among three species of the Ulsan arsenopyrite, arsenopyrite I does not serve as a geothermometer, because (Ni+Co) content always exceeds 1 weight percent. In spite of the absence of Fe-S minerals as sulphur-buffer assemblage, the presence of $Bi(l)-Bi_2S_3$ sulphur-buffer enables arsenopyrite II to apply successfully to the estimation of either temperature and sulphur fugacity, the results are, $T=460{\sim}470^{\circ}C$, and log $f(S_2)=-7.4{\sim}7.0$. With reference to arsenopyrite III, only arsenopyrite coexisting with pyrite and "primary" monoclinic pyrrhotite may serve to restrict the range of both temperature and sulphur fugacity, $T=320{\sim}440^{\circ}C$, log $f(S_2)=-9.0{\sim}7.0$. These temperature data are consistent with those obtained by fluid inclusion geothermometry on late grandite garnet somewhat earlier than arsenopyrite II. At the beginning of this paper, the geological environments of the ore formation at Ulsan are considered from regional and local geologic settings, and physicochemical conditions are suspected, in particular the formation pressure (lithostatic pressure) is assumed to be 0.5kb (50MPa). The present study on arsenopyrite geothermometry, however, does not bring about any contradictions against the above premises. Thus, the following genetical view on the Ulsan ore deposit previously advocated by two of the present authors (Choi and Imai) becomes more evident; the ore deposit was formed at shallow depth and relatively high-temperature with steep geothermal gradient-xenothermal conditions.

      • KCI등재

        충청도(忠淸道) 동북부(東北部) 태창(泰昌)·보연(寶蓮), 금왕(金旺) 광산(鑛山)의 금은광화작용(金銀鑛化作用)

        최선규,박노영,박성원,Choi, Seon Gyu,Park, No Young,Park, Sung Won 대한자원환경지질학회 1986 자원환경지질 Vol.19 No.no.spc

        A number of auriferous veins occur in the Precambrian metamorphic terrain from Chungju to Mugeug district. These gold (-silver) deposits consist mainly of the fissure-filling quartz veins intruding the Precambrian gneiss or schist and Jurassic or Cretaceous granite. These gold (-silver) deposits can be 'divided into two mineralization epochs, (a) gold-rich veins related to Daebo igneous activity, and (b) gold-silver veins related to Bulgugsa igneous activity. These two groups of ore deposits with different generation can be characterized by the mode of occurrence of ore vein and the ore mineral associations. The auriferous quartz veins of Taechang and Boryeon mines associated with late Jurassic igneous activity are massive in character, and show the simple mineral assemblages and low Ag/Au ratio in the ores, representing a single mineralization system. The ore minerals are predominantly quartz containing minor or trace amonts of pyrrhotite, sphalerite, galena, pyrite, chalcopyrite and electrum. Electrum is closely associated with pyrrhotite and has chemical compositions from 61.4 to 78.5 atomic % Au. Fluid inclusion data suggest that ore minerals were deposited at temperatures between 238 and $390^{\circ}C$ from $CO_2$-rich fluids. The gold and/or silver-bearing quartz veins of Geumwang mine related to middle Cretaceous igneous activity are characterized by the multistage history, diverse mineral assemblages with high Ag/Au ratio in the ores. The ores of Geumwang mine have two contrasting mineral assemblages (1) pyrite+galena+sphalerite+arsenopyrite+electrum+argentite, representing the higher gold mineralization, and (2) pyrite+chalcopyrite+ galena +sphalerite+ arsenopyrite+silver sulfosalts+ electrum+ native silver+argentite, representing the higher silver mineralization. Electrum is closely associated with pyrite and has chemical compositions from 11.2 to 49.9 atomic % Au. The depositional environment during the higher gold mineralization can be estimated as the range of both temperature and sulfur fugacity, T= $200{\sim}300^{\circ}C$, log f ($S_2$) = $10^{-10}{\sim}10^{-15}$. The higher silver mineralization may be interpreted to have formed a range of falling temperature ($150{\sim}200^{\circ}C$) and low sulfur fugacity($10^{-10}{\sim}10^{-15}$). These temperature data are consistent with homogenization temperatures of fluId inclusions in quartz. Thus, the gold veins related to the Daebo igneous activity may be formed by the environment of higher temperature and pressure than the gold-silver veins associated with the Bulgugsa igneous activity.

      • KCI등재

        충청북도(忠淸北道) 영동지역(永同地域) 금은광상(金銀鑛床)의 금은광화작용(金銀鑛化作用)에 관한 연구(硏究)

        최선규,지세정,박성원,Choi, Seon Gyu,Chi, Se Jung,Park, Sung Won 대한자원환경지질학회 1988 자원환경지질 Vol.21 No.4

        Most of the gold (-silver) vein deposits at Yeongdong District are mainly distributed in the precambrian metamorphic rocks. Based on the Ag/Au total production and ore grade ratios, the chemical composition of electrum and the associated sulfides, the gold(-silver) deposits at Yeongdong District may be classified into 4 classes: pyrrhotite - type gold deposits( I), pyrite - type gold deposits (IT A; massive vein), pyrite - type gold deposits (II B; nonmassive vein) and argentite - type gold - silver deposits(III). The chemical study on electrum(including native gold) revealed that Au content (2.8 to 92.4 atomic%) of electrums varies very widely for different classes of deposits. The Au content of electrum associated with pyrrhotite (Class I), ranging from 47.1 to 92.4 atomic% Au, is clearly higher than that associated with pyrite (Classes IIA, IIB and III). In contrast, classes I, II, and III deposits do not show clear differences in Au content of electrum. In general, pyrrhotite - type gold deposits(I) are characterized by features such as simply massive vein morphology, low values in the Ag/Au total production and ore grade ratios, the absence or rarity of silver - bearing minerals except electrum, and distinctively simple mineralogy. Although the geological and mineralogical features and vein morphology of pyrite - type gold deposits(IIA)are very similar to those of pyrrhotite - type gold deposits (I), Class II A deposits reveal significant differences in the associated iron sulfide (i. e. pyrite) with electrum and Au content of electrum. The Ag/Au total production and ore grade ratios from Class II A deposits are relatively slightly higher than those from Class I deposits. Pyrite - type gold deposits(II B) and argentite - type gold - silver deposits (III) have many common features; complex vein morphology, medium to high values in the Ag/Au total production and ore grade ratios and the associated iron sulfide (i. e. pyrite). In contrast to Class II B deposits, Class III deposits have significantly high Ag/Au total production and ore grade ratios. It indicates distinct difference in the abundance of silver minerals (i. e. native silver and argentite). The fluid inclusion analyses and mineralogical data of electrum tarnish method indicate that the gold mineralization of Classes I and II A deposits was deposited at temperatures between $230^{\circ}$ and $370^{\circ}C$, whereas the gold (-silver) mineralization of Classes ITB and ill formed from the temperature range of $150^{\circ}-290^{\circ}C$. Therefore, Classes I and IT A deposits have been formed at higher temperature condition and/or deeper positions than Classes IIB and III.

      • KCI등재

        Petrochemical Study of the Gadaeri Granite in Ulsan Area, Kyeongsang Province

        최선규,위수민,Choi, Seon-Gyu,Wee, Soo-Meen The Korean Society of Economic and Environmental G 1994 자원환경지질 Vol.27 No.5

        울산지역에 분포하는 가대리 화강암체는 울산 철 텅그스텐 광화작용의 관계화성암으로서 전형적인 미문상조직을 보여주며, 칼크-알칼리 계열과 I-type화강암류의 지화학적 특성을 나타내고 있다. 가대리화강암은 물이 포화된 상태에서 0.5~2.0 kbar의 압력조건하에서 생성된 것으로 이는 천부에서의 분별결정에 기인된 것으로 화학성분의 분화는 대부분 알칼리 장석의 분별결정작용으로 이루어졌다. 경상분지 최남단에 분포하며 철광화작용과 관련된 미문상화강암체인 마산-김해 화강암체와 가대리화강암제는 미량성분의 화학조성을 비교해볼때 전혀다른 모마그마에서 분화되었음올 시사해준다. The Gadaeri granite near Ulsan mine is an oval-shape isolated granitic body, and is genetically related to the iron-tungsten mineralization. The Gadaeri granite exhibits calc-alkaline and I-type characteristics, and generally shows the micrographic texture which indicates the shallow depth of emplacement. Consideration of the stratigraphic thickness of Ulsan formation and minimum-melt compositions suggests that the bulk magma crystallized at pressure of 0.5~2.0 kbar under water saturated condition. The evolutionary trend observed in the studied rocks represents that feldspar fractional crystallization has been a major magmatic process at the Gadaeri granite pluton. Different chemical characteristics between the Gadaeri and the Masan-Kimhae granites cannot be explained by fractional crystallization or different degrees of partial melting, and it reflects that the magma source for Gadaeri granite was different from that of the Masan and Kimhae granites.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼