RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        해석적 기법을 이용한 이종 재료로 제작된 자동차 센터 플로어를 통한 차체 경량성 연구

        최계광,조재웅 한국기계기술학회 2020 한국기계기술학회지 Vol.22 No.5

        In this study, the failure characteristic of the center floor of a front-wheel drive vehicle was investigated according to material. UHSS, Al6061-T6, CFRP, and CFRP-Al were used as materials. As the analysis condition, a fixed support was applied to the rear surface of the center floor and a forced displacement of 2 mm/sec was applied to the front surface. As the result, when comparing with the equivalent stress and strain energy according to the material, it was found that UHSS, Al6061-T6, CFRP, and CFRP-Al were higher in the order. Also, when comparing with the equivalent strain due to the material, it was shown that the equivalent strain was high in the order of Al6061-T6, UHSS, CFRP and CFRP-Al. As for the damage characteristic of the center floor according to the material, it was found that the highest structural stability was obtained when UHSS was used. However, it was found that it was good to utilize Al6061-T6 in order to acquire the structural stability along with the structure with the lighter weight.

      • KCI등재

        드론 날개의 형상에 따른 유동 성능에 관한 연구

        최계광,조재웅 한국기계기술학회 2021 한국기계기술학회지 Vol.23 No.1

        In this study, the flow rate at the drone and the pressure around the drone were investigated by carrying out the flow analysis due to the wing shape of drone. At models 1, 2 and 3, the positions of areas with the maximum flow rate around the drone according to the shape of the wing were seen to be same at the rear wing of drone. Model 2 has the fastest flow rate, followed by model 1 and model 3. At the distribution of flow pressure by model around the drone according to the wing shape of drone, models 1, 2 and 3 had the same highest pressures at the center of drone. In comparison with the maximum pressures of models near the wing shape of the drone, the flow pressure at model 2 was higher compared with models 1 and 3. At the wing shape of the drone, model 2 is considered to carry the flow performance better than models 1 and 3. So, the result of this study is thought to be useful for designing the wing shape of the drone. Without the test of flow performance due to the shape of drone wing, the flow performance can be seen as the flow rate and pressure are investigated through the flow analysis.

      • KCI등재

        자동차 프론트 윙의 형상에 따른 운행시 유동해석

        최계광,조재웅 한국기계기술학회 2020 한국기계기술학회지 Vol.22 No.6

        In this study, the flow analyses were carried out on three kinds of front wing models. The down forces of front wings which influence the stability, cornering at driving were investigated with three models. At model 1, the maximum pressure shown on the main plate of front wing is 3177.539Pa. The maximum pressures at models 2 and 3 are shown to be 3429.677Pa and 3506.494Pa, respectively. The higher the pressure, the more resistance. So, the lower the pressure, the less resistance the model gets. At model 1, the maximum velocity of stream that flows under the front wing was shown to be the smallest among three models. In case of all three models, the pressure at which the air passes through the front wing is high in the upper part of the front wing. Among three models, model 1 is thought to be the most appropriate model to give the effect of the down force while reducing the flow resistance at driving. By utilizing this study result, the flow velocity and pressure are investigated without the flow experiment at driving due to the configuration of automotive front wing, and the flow resistance can be seen.

      • KCI등재

        데스크 탑 컴퓨터내에 팬의 형상별 유동 성능 해석에 관한 연구

        최계광,조재웅 한국기계기술학회 2020 한국기계기술학회지 Vol.22 No.4

        In this study, by analyzing the flow rate and the pressure applied to the fan for the flow of air with room temperature into the fan in desktop computer, it was investigated which model was suitable for flow resistance. When comparing the speed distribution of air flow by model according to fan shape, model A was able to confirm that the fan performance was not good but the external flow was widely distributed. And model B was able to know that the performance was good but the external flow was smaller. Model C was found to have good performance and a wide distribution of outer flow. In cases of three models, it was equally shown that the pressure was highest on the blade side of the inlet where the air enters. Model B receives more pressure than models A and C when the same air flow rate is applied, so models A and C are considered more efficient cooling fans than model B. When considering the flow rates and the pressures acting on the model, model C is thought to have relatively good performance. By utilizing this study result, the flow rate and pressure are investigated without flow experiment by the shape of fan in desktop computer, and the flow capacity can be seen.

      • KCI등재

        A Comparative Analysis on Fracture Behaviors of 3- Point Bending Specimens Made of CFRP and Metal

        최계광,조재웅,황규완 한국정밀공학회 2017 International Journal of Precision Engineering and Vol.18 No.2

        As the composite material of fiber reinforced plastic has the high strength with light weight unlike exiting metal materials, its usage is being gradually increased. In this study, the fracture behaviors are investigated with CFRP and existing metals of aluminum, brass and structural steel by 3-point bending test. As existing metal materials, the maximum reaction forces of 2250 N, 2500 N and 2400 N occurred at aluminum, brass and structural steel respectively. In contrast, the maximum force of about 4000 N was shown at CFRP. This study result can be applied to the durable design of composite structure.

      • KCI등재

        자동차 루프랙의 형상에 따른 구조 해석을 통한 융합 연구

        최계광,조재웅 한국융합학회 2019 한국융합학회논문지 Vol.10 No.12

        Recently, the number of people enjoying various leisure sports has increased. As a result, the vehicles with various items loaded onto the roof can be easily seen on the street. The device that enables loading on the vehicle roof is called by a rack, and each vehicle has its own different shape. There are various types of roof racks but they must have the strength and durability to load heavy loads. In this study, the structural analysis was performed according to the support method of the roof rack and the shape of the fixture. Of three models, it was shown that model C had the best durability. Therefore, this study result shows which shape of the roof rack is most stable among the models. By utilizing the design data about a convergence study through the structural analysis due to the shape of automotive roof rack obtained on the basis of this result, the esthetic feeling can be shown by being converged onto the part of automobile at actual life. 최근 취미로 다양한 레포츠를 즐기는 인구가 증가하였다. 그에 따라 차량 지붕위에 다양한 물건들을 적재한 차량들을 거리에서 쉽게 볼 수가 있다. 차량 지붕위에 적재를 할 수 있게 하는 장치는 랙 이라는 장치이며 차량마다 각기 다른 형상을 가지고 있다. 다양한 종류들이 있지만 무거운 짐을 적재하기 위해 강도 및 내구성을 가져야 한다. 본 연구에서는 루프 랙의 지지대 방식과 고정대의 형상에 따른 구조 해석을 하였다. 세 가지의 모델들 중, Model C가 가장 좋은 내구성을 가지고 있음을 보였다. 따라서 어떤 형상을 가진 루프랙이 가장 안정성이 있는 것을 본 연구 결과로서 알 수 있다. 본 결과를 토대로 얻은 자동차 루프랙의 형상에 따른 구조 해석에 통한 융합 연구에 대한 설계데이터를 활용함으로서 실생활에서의 자동차 부품에 융합하여 그 미감을 보일 수 있다.

      • KCI등재

        자동차 리프트 형상에 따른 내구성 해석을 통한 융합 연구

        최계광,조재웅 한국융합학회 2019 한국융합학회논문지 Vol.10 No.12

        자동차의 하부를 수리하기 위해서는 차 밑으로 들어가야 된다. 그러나 이 작업은 수리공이 수리하기에 불편하기도 하고 사고를 일으킬 수도 있다. 이러한 난제들을 해결하기 위하여 개발된 장비가 자동차의 리프트이다. 본 연구에서는 세 가지의 자동차의 리프트 Model 1, 2, 3을 설계하였다. 구조용 강의 물성치를 모델들에 적용하고 동일한 조건으로 같은 하중을 가하여 해석을 하였다. Model 2, 3이  Model 1보다 더 적은 구조적 변형을 보였으며 Model 2, 3이 Model 1보다 구조적으로 더 안정적인 것을 나타냈다. 본 연구결과를 토대로 얻은 자동차 리프트 형상에 따른 내구성 해석을 통한 융합 연구에 대한 설계데이터를 활용함으로서 실생활에서의 자동차 수리 기자재 부품에 융합하여 그 미감을 보일 수 있다. To repair the underside of the car, a repairman has to enter under the car body. But this work can make it difficult for him to fix it and the injuries can occur. To solve these difficult problems, the developed equipment is the automotive lift. In this study, three kinds of lift models 1, 2 and 3 were designed and the material properties of the structural steel were applied. As the same load were applied under the same conditions on all models, the structural analyses were conducted. Models 2 and 3 were shown to have the structural deformation less than model 1. Also, models 2 and 3 were shown to be more stable than model 1 structurally. By utilizing the design data on a convergence research through durability analysis according to the configuration of automotive lift obtained on the basis of this result, the esthetic feeling can be shown by being converged onto the automotive repair equipment parts at actual life.

      • KCI등재

        자작 자동차 프레임의 형상에 따른 구조 및 피로 해석에 관한 연구

        최계광,조재웅 한국기계기술학회 2020 한국기계기술학회지 Vol.22 No.3

        In this study, the structural and fatigue analyses were carried out according to the shape of the self-made car frame. As a result of structural analysis, all models are shown to have the weak strength and large deformation, as the equivalent stress increases at the forward part of the impact force. It can be seen that model 3 is deformed less than other models 1 or 2. And model 3 with the truss structure prevents the great deformation from the collision. In case of irregular fatigue loads, the fatigue life of the ‘Sample history’ increased by about 59.3 times compared to the ‘SAE bracket history’ under extreme fatigue load conditions, indicating that the fatigue load condition of the ‘Sample history’ were stable. The fatigue life and deformation of model 3 among all models are significantly different to models 1 and 2. If the research results are applied to the design of self-made cars, it will be useful for improving the durability and preventing the damage. The results of this study can be effectively utilized to investigate the values of stresses and deformations, and fatigue lives without the experiments of fracture and fatigue according to the shape of the car frame.

      • KCI등재

        대형 상용 트럭의 시트에서의 형상 별 구조해석

        최계광,조재웅 한국기계기술학회 2020 한국기계기술학회지 Vol.22 No.5

        In this study, the structural analyses were conducted for each model by applying the loads into the design of a large commercial truck seat. Model C with three vertical frames has the smallest total deformation among all models, indicating the strongest stiffness. The maximum total deformation of model C was shown to be 0.68 times smaller than that of model A and 0.79 times smaller than that of model B. The equivalent stress of model C was also shown to be the lowest, indicating the greatest stiffness. The maximum equivalent stress of model C was shown to be 0.8 times smaller than that of model A and 0.91 times smaller than that of model B. At the upper part of the seat or the part where the force was applied, all three models were shown to have the largest total deformations and equivalent stresses. If the result of this study is applied to the design of automotive seat frame, it is thought that the durable and rigid sheets can be manufactured efficiently. By utilizing this study result, the equivalent stress and total deformation are investigated without the real experiment by shape at the seat of large commercial truck, and the durability and rigidity can be seen.

      • KCI등재

        트럭 화물칸 및 윈드 디플렉터에 따른 운행중 공기흐름에 대한 융합 연구

        최계광,조재웅,Choi, Kye-Kwang,Cho, Jae-Ung 한국융합학회 2020 한국융합학회논문지 Vol.11 No.9

        In this study, the freight vehicles were modelled and the flow analysis on the existence or non-existence of a cargo container and the wind deflector were carried out. Based on the driving speed of 100 km/hr, at all models A, B and C, the highest flow rate was shown between 58 m/s and 59 m/s at the top of the model shape. All models A, B and C showed the highest pressure of air resistance between 652Pa and 671Pa at the front of the model geometry. The maximum pressure of model A is considered to be the smallest, with the least flow resistance to speed compared to models B and C. Therefore, it can be seen that model A has an advantageous condition for air resistance in terms of fuel costs. Unlike model B which causes the rapid flow resistance at the cargo compartment, model C can be found to flow a little more smoothly on the streamlined wind deflector. So, the flow air at a streamlined shape is considered to be more advantageous in terms of air resistance than at angular shape. By applying the research analysis result on the air flow in driving according to a cargo container and the wind deflector, it is seen that this study is adequate at the practical efficient design and aesthetic convergence.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼