RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        개량 더블티 슬래브 제안, 전단실험, 그리고 스트럿-타이모델 해석

        주호성,유승룡 한국복합신소재구조학회 2017 복합신소재구조학회논문집 Vol.8 No.2

        Modified dapped end, precast prestressed double-tee slabs were considered in this research. It can facilitate insertion of service ducts at the dapped ends. The total depth of the floor slab may be reduced. In addition, the underside of the double-tee slab showed simpler appearance. Static three-point shear loading test was performed on full-scale specimens. And three modified single-tee slabs were analyzed by strut-tie model method. The specimen failed during the test in the same location as predicted by the strut-tie analytical model. The analysis of experimental results in comparison to the analysis results revealed that the experimental failure loads manifested 108% of analytical failure loads on the average.

      • KCI등재

        Ku 대역 저손실 소형 4×4 버틀러 매트릭스의 구현

        주호성(Hosung Joo),엄순영(Soon-Young Eom) 한국전자파학회 2020 한국전자파학회논문지 Vol.31 No.12

        Ku 대역(12~18 GHz)은 주로 장거리 위성 통신 및 레이다에 활용된다. 장거리 통신에서는 신호의 세기가 약하므로, 송/수신단의 손실을 줄이는 것이 중요하다. 본 논문에서는 15.7~16.7 GHz에서 동작하는 저손실 소형 4×4 버틀러 매트릭스 (Butler matrix) 구조를 제안하였고, 이를 설계 및 측정하였다. 저손실 특성 구현을 위하여, 서스펜디드 스트립라인(suspended stripline)을 기반으로 전송선로를 설계하였다. 또한, 소형화 구현을 위하여, 버틀러 매트릭스 내부 회로를 100 Ω 시스템으로 설계하고, 입/출력단을 50 Ω으로 정합하였다. 최적화 설계를 통하여 제작된 버틀러 매트릭스 회로의 크기는 45×22×2.3 mm이며, 동작 주파수 대역 내에서 측정된 삽입 손실, 단자 간 격리도, 각 단자의 반사 손실은 각각 1.36 dB(커넥터 손실 포함), 20.5 dB, 15.3 dB로 시뮬레이션 성능과 유사한 성능을 보였다. 개발된 4×4 버틀러 매트릭스는 1×4 선형 배열 안테나의 저손실 빔 스위칭 회로로 활용할 수 있을 것이다. The Ku-band (12~18 GHz) is mainly used for long-range satellite communications and radar applications. Because the signal power is weak in a long-range communication, it is important to reduce the loss of the transmitter and receiver. In this paper, we propose a low-loss compact 4×4 Butler matrix structure that operates in the range of 15.7~16.7 GHz. To achieve low-loss characteristics, a low-loss transmission line was designed based on the suspended transmission line. To miniaturize the structure, the internal circuit of the Butler matrix was designed as a 100 Ω system, and the input/output stage was matched at 50 Ω. The size of the Butler matrix circuit manufactured through the optimized design was 45×22×2.3 mm. The insertion loss, isolation between terminals, and return loss of each terminal measured within the operating frequency band were 1.36 dB (including connector loss), 20.5 dB, and 15.3 dB, respectively, demonstrating a performance similar to that of the simulated performance. The proposed 4×4 Butler matrix can be utilized as a low-loss beam-switching circuit for a 1×4 linear array antenna.

      • KCI등재

        L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석

        유승룡,주호성,하수경 한국복합신소재구조학회 2015 복합신소재구조학회논문집 Vol.6 No.2

        The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

      • KCI등재

        L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 휨 거동 분석

        유승룡,주호성,손국원 한국복합신소재구조학회 2015 복합신소재구조학회논문집 Vol.6 No.2

        This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Top shear connection of the PC panel was required to show the composite strength of RC column and PC wall panel. However, the strength of the connection did not influence directly on the ultimate loading capacities of the specimens in the positive loading because the loaded RC column push the side of PC wall panel and it moved horizontally before the shear connector receive the concentrated shear force in the positive loading process. Under the positive loading sequence(push loading), the reinforced concrete column and PC panel showed flexural strength which is larger than 97% of the composite section because of the rigid binding at the top of precast panel. Similar load-deformation relationship and ultimated horizontal load capacities were shown in the test of PR1-LA and PR1-LP specimens because they have same section dimension and detail at the flexural critical section. An average of 4.7 times increase in the positive maximum loading(average 967kN) and 2.7 times increase in the negative maximum loading(average 592.5kN) had resulted from the test of seismic resistant specimens with anchored and welded steel plate connections than that of unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.0% and 1.4%.

      • KCI등재

        U형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 보-기둥 구조물의 전단 거동 분석

        하수경,손국원,유승룡,주호성 한국구조물진단유지관리공학회 2015 한국구조물진단유지관리공학회 논문집 Vol.19 No.6

        이 연구의 목표는 학교 건물과 같은 저층 보-기둥 철근콘크리트 구조 건물에서 프리캐스트 벽패널을 사용한 새로운 내진보강 방법 을 개발하는데 있다. 1개의 무 보강 보-기둥 실험체와 U형 PC 패널로 보강한 2개의 보강 보-기둥 실험체에 대한 정적 이력 하중실험을 진행하 였다. 앵커 접합부 실험체는 전단 파괴될 것으로 해석되었고 철판 용접 접합부 실험체는 휨 파괴할 것으로 예측되었다. 실험체의 종국 내력은 상부 접합부의 전단 내력과 PC 패널 절곡 부 휨 위험단면에서 휨 내력 중 약한 것으로 결정되었다. 이 실험체에서, 한쪽 RC기둥이 가 하중(미는 실험 하중)을 받아 PC 패널 부재를 밀게 된다면, 다른 쪽 내부 수직부재는 상부 전단 접합부로부터 부 하중(당기는 실험 하중)을 받게 되어있었 다. 가 하중을 받는 2개의 부재는 합성 휨 거동이 지배적이므로 합성단면의 휨 내력이 실험체의 최종 내력을 결정하게 되지만, 이 경우 최종 내 력에 대하여 상부 전단 접합부 강도의 직접적인 영향은 없다고 볼 수 있다. 그러나 부 하중(당기는 하중)을 받는 RC 기둥과 PC 패널 부재는 비 합성 거동이 지배적이고 실험체의 최종 내력은 상부 전단 접합부 전단내력의 크기에서 직접 영향을 받는 것으로 파악되었다. ACI 318M-11 Appendix-D 앵커 전단설계에 기초한 전단내력 그리고 실험에서 얻은 최대하중을 적용하여 마이다스 젠 탄성설계에 의하여 계산한 전단 외력 에 대한 비교 해석결과는 실험결과와 일치하는 해석결과를 보여주었다. The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of U-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D, agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼