http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
헬스케어 환경에서 복잡도를 고려한 R파 검출과 이진 부호화 기반의 부정맥 분류방법
조익성,윤정오,Cho, Iksung,Yoon, Jungoh 디지털산업정보학회 2016 디지털산업정보학회논문지 Vol.12 No.4
Previous works for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods require accurate detection of ECG signal, higher computational cost and larger processing time. But it is difficult to analyze the ECG signal because of various noise types. Also in the healthcare system based IOT that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose R wave detection considering complexity and arrhythmia classification based on binary coding. For this purpose, we detected R wave through SOM and then RR interval from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. R wave detection and PVC, PAC, Normal classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.41%, 97.18%, 94.14%, 99.83% in R wave, PVC, PAC, Normal.
QRS구간 제거와 이동평균을 통한 대상 영역 추출 기반의 T파 검출 알고리즘
조익성,권혁숭,Cho, Ik-sung,Kwon, Hyeog-soong 한국정보통신학회 2017 한국정보통신학회논문지 Vol.21 No.2
T wave is cardiac parameters that represent ventricular repolarization, it is very important to diagnose arrhythmia. Several methods for detecting T wave have been proposed, such as frequency analysis and non-linear approach. However, detection accuracy is at the lower level. This is because of the overlap of the P wave and T wave depending on the heart condition. We propose T wave detection algorithm based on target area extraction through QRS cancellation and moving average. For this purpose, we detected Q, R, S wave from noise-free ECG(electrocardiogram) signal through the preprocessing method. And then we extracted P, T target area by applying decision rule for four PAC(premature atrial contraction) pattern another arrhythmia through moving average and detected T wave using RT interval and threshold of RR interval. The performance of T wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 95.32%.
적응형 문턱치와 QRS피크 변화에 따른 P파 검출 알고리즘
조익성,김주만,이완직,권혁숭,Cho, Ik-sung,Kim, Joo-Man,Lee, Wan-Jik,Kwon, Hyeog-soong 한국정보통신학회 2016 한국정보통신학회논문지 Vol.20 No.8
P wave is cardiac parameters that represent the electrical and physiological characteristics, it is very important to diagnose atrial arrhythmia. However, It is very difficult to detect because of the small size compared to R wave and the various morphology. Several methods for detecting P wave has been proposed, such as frequency analysis and non-linear approach. However, in the case of conduction abnormality such as AV block or atrial arrhythmia, detection accuracy is at the lower level. We propose P wave detection algorithm through adaptive threshold and QRS peak variability. For this purpose, we detected Q, R, S wave from noise-free ECG signal through the preprocessing method. And then we classified three pattern of P wave by peak variability and detected adaptive window and threshold. The performance of P wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 92.60%.
조익성,권혁숭,Cho, Ik-Sung,Kwon, Hyeog-Soong 한국정보통신학회 2013 한국정보통신학회논문지 Vol.17 No.4
The R wave of QRS complex is the most prominent feature in ECG because of its specific shape; therefore it is taken as a reference in ECG feature extraction. But R wave detection suffers from the fact that frequency bands of the noise/other components such as P/T waves overlap with that of QRS complex. ECG signal processing must consider efficiency for hardware and software resources available in processing for miniaturization and low power. In other words, the design of algorithm that exactly detects QRS region using minimal computation by analyzing the person's physical condition and/or environment is needed. Therefore, efficient QRS detection based on SOM(Subtractive Operation Method) is presented in this paper. For this purpose, we detected R wave through the preprocessing method using morphological filter, empirical threshold, and subtractive signal. Also, we applied dynamic backward searching method for efficient detection. The performance of R wave detection is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.41% in R wave detection.
효율적인 QRS 검출을 위한 형태 연산 기반의 기저선 잡음 제거 기법
조익성,김주만,김선종,권혁숭,Cho, Ik-Sung,Kim, Joo-Man,Kim, Seon-Jong,Kwon, Hyeog-Soong 한국정보통신학회 2013 한국정보통신학회논문지 Vol.17 No.1
QRS detection of ECG is the most popular and easy way to detect cardiac-disease. But it is difficult to analyze the ECG signal because of various noise types. The important problem in recording ECG signal is a baseline wandering, which is occurred by rhythm of respiration and muscle contraction attaching to an electrode. Particularly, in the healthcare system that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. In other words, the design of algorithm that exactly detects QRS region using minimal computation by analyzing the person's physical condition and/or environment is needed. Therefore, baseline wander removing method based on morphological filter for efficient QRS detection method is presented in this paper. For this purpose, we detected QRS through the preprocessing method using morphological filter, adaptive threshold, and window. The signal distortion ratio of the proposed method is compared with other filtering method. Also, R wave detection is evaluated by using MIT-BIH arrhythmia database. Experiment result show that proposed method removes baseline wanders effectively without significant morphological distortion.
효율적인 QRS 검출과 프로파일링 기법을 통한 심실조기수축(PVC) 분류
조익성,권혁숭,Cho, Ik-Sung,Kwon, Hyeog-Soong 한국정보통신학회 2013 한국정보통신학회논문지 Vol.17 No.3
QRS detection of ECG is the most popular and easy way to detect cardiac-disease. But it is difficult to analyze the ECG signal because of various noise types. Also in the healthcare system that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. In other words, the design of algorithm that exactly detects QRS wave using minimal computation and classifies PVC by analyzing the persons's physical condition and/or environment is needed. Thus, efficient QRS detection and PVC classification based on profiling method is presented in this paper. For this purpose, we detected QRS through the preprocessing method using morphological filter, adaptive threshold, and window. Also, we applied profiling method to classify each patient's normal cardiac behavior through hash function. The performance of R wave detection, normal beat and PVC classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.77% in R wave detection and the rate of 0.65% in normal beat classification error and 93.29% in PVC classification.
심전도신호 샘플링 주파수에 따른 R파 검출 최적 문턱치 설정
조익성,권혁숭,Cho, Ik-sung,Kwon, Hyeog-soong 한국정보통신학회 2017 한국정보통신학회논문지 Vol.21 No.7
It is difficult to guarantee the reliability of the algorithm due to the difference of the sampling frequency among the various ECG databases used for the R wave detection in case of applying to different environments. In this study, we propose an optimal threshold setting method for R wave detection according to the sampling frequency of ECG signals. For this purpose, preprocessing process was performed using moving average and the squaring function based the derivative. The optimal value for the peak threshold was then detected according to the sampling frequency by changing the threshold value according to the variation of the signal and the previously detected peak value. The performance of R wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. When the optimal values of the differential section, window size, and threshold coefficient for the MIT-BIH sampling frequency of 360 Hz were 7, 8, and 6.6, respectively, the R wave detection rate was 99.758%.
QRS 특징점 변화에 따른 바이너리 코딩 기반의 부정맥 분류
조익성,권혁숭,Cho, Ik-Sung,Kwon, Hyeog-Soong 한국정보통신학회 2013 한국정보통신학회논문지 Vol.17 No.8
Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose arrhythmia detection based on binary coding using QRS feature varibility. For this purpose, we detected R wave, RR interval, QRS width from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. PVC, PAC, Normal, BBB, Paced beat classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 97.18%, 94.14%, 99.83%, 92.77%, 97.48% in PVC, PAC, Normal, BBB, Paced beat classification.
ECG 패턴 분석과 템플릿 문턱값을 통한 조기수축 부정맥분류
조익성,조영창,권혁숭,Cho, Ik-sung,Cho, Young-Chang,Kwon, Hyeog-soong 한국정보통신학회 2016 한국정보통신학회논문지 Vol.20 No.2
일반적인 부정맥 분류 방법의 경우 심방 박동 수와 관련한 PP간격, P모양의 다양성과 같은 조건을 이용하는데, 잡음으로 인해 정확한 P파의 검출이 어렵기 때문에 잡음의 영향을 비교적 적게 받는 R파를 이용하는 것이 유리하다. 따라서 본 연구에서는 R파 중심의 ECG(electrocardiography) 패턴 분석과 템플릿 문턱치를 도입하여 조기수축 부정맥 분류 방법을 제안한다. 이를 위해 형태 연산을 통한 전 처리 과정과 차감 동작 기법을 통해 R파를 검출하였다. 이후 RR 간격의 평균 가중치와 변화율을 이용하여 먼저 조기수축 파형의 패턴을 분류하고, R파의 진폭에 대한 템플릿 문턱값을 통해 조기심실수축과 조기심방수축을 분류하는 알고리즘을 개발하였다. 제안한 방법의 우수성을 입증하기 위해 조기 심방과 심실수축이 30개 이상 포함된 MIT-BIH 6개의 레코드를 대상으로 한 R파의 평균 검출율은 99.77%의 성능을 나타내었고, 조기심실수축과 심방수축 부정맥은 각각 94.91%와 95.76%의 평균 분류율을 나타내었다.
QRS 패턴에 의한 QS 간격과 R파의 진폭을 이용한 조기심실수축 분류
조익성,권혁숭,Cho, Ik-Sung,Kwon, Hyeog-Soong 한국정보통신학회 2014 한국정보통신학회논문지 Vol.18 No.4
Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. Even if some methods have the advantage in low complexity, but they generally suffer form low sensitivity. Also, it is difficult to detect PVC accurately because of the various QRS pattern by person's individual difference. Therefore it is necessary to design an efficient algorithm that classifies PVC based on QRS pattern in realtime and decreases computational cost by extracting minimal feature. In this paper, we propose PVC classification based on QRS pattern using QS interval and R wave amplitude. For this purpose, we detected R wave, RR interval, QRS pattern from noise-free ECG signal through the preprocessing method. Also, we classified PVC in realtime through QS interval and R wave amplitude. The performance of R wave detection, PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 PVC. The achieved scores indicate the average of 99.02% in R wave detection and the rate of 93.72% in PVC classification.