http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Impact of Soil Moisture and Nutrient Management on the Growth and Yield of Two Potato Cultivars
이규빈,이희태,최장규,권도희,이재연,진용익,장동칠,정건호 한국자원식물학회 2024 한국자원식물학회지 Vol.37 No.6
Abstract - Effective moisture and nutrient management during tuber formation and growth significantly impacts potato yields. While many farms rely on natural rainfall, some enhance potato growth and yield using furrow irrigation, fountain hoses, sprinklers, and drip hoses. However, there is limited research on the optimal fertigation levels for potato cultivation in Korea. This study aims to determine the optimal moisture content for spring potato cultivation and establish suitable fertilization standards. To investigate the effect of soil moisture content on potato growth and yield, tests were conducted with soil moisture levels set at 10% and 20%. Results showed that growth and yield were highest in the 20% treatment group for both the ‘Superior’ and ‘Seohong’ cultivars. To determine additional fertilizer standards, the control group (basic fertilization without additional fertilizer) and treatments of 0.5, 1.0, and 1.5 times the standard fertilizer amount were applied using compound fertilizer (NPK). Among these treatments, the growth and yield of potatoes were optimal in the 50-100% fertilization group for both cultivars. Therefore, to maximize yield during spring potato cultivation, it is recommended to maintain soil moisture at 20% and apply NPK fertilizer at 50-100% of the standard amount during the tuber formation and enlargement periods. This approach can effectively increase both the above-ground biomass and tuber yield.
에너지 순환을 위한 폐자원 에너지에서 생성되는 전기에너지 저장장치의 촉매를 이용한 성능향상
이규빈,안연주,이원미,권용재 한국폐기물자원순환학회 2016 한국폐기물자원순환학회 학술대회 Vol.2016 No.11
지구온난화의 영향으로 전 세계적으로 기후변화가 일어나고 있다. 각국에는 기존의 연료인 석탄 및 석유의 에너지를 줄이고 온실가스 저감 및 저탄소 생활문화에 대한 관심이 높다. 특히 매립되는 폐기물을 재사용하기 위해 폐기물에 저장된 많은 양의 에너지를 활용하여 전기를 생산하는 가스발전소를 가동하고 있다. 이렇게 생산된 전기에너지중 일부는 자체적으로 소모가 되고 일부는 한국전력에 판매하고 있다. 그러나 일부의 가스는 전기에너지로 전환하지 못하여 버려지게 된다. 그 이유는 매립지에서 발생된 가스의 양을 조절하기 어렵고 전기에너지의 다양한를 따라가기 힘들기 때문이다. 그렇기 때문에 일정한 에너지 공급과 잉여전력의 저장을 위해 재생에너지 산업에 꼭 필요한 장치가 에너지저장장치(ESS)이다. 그 중 친환경 적이며 높은 내구성 및 안전성을 갖는 장치가 VRFB이다. VRFB의 경우 바나듐을 활물질로 사용한 2차 전지로서 산화환원 반응을 통해 전기에너지를 화학적에너지로 전환하여 저장하였다가 필요한 순간에 발전하여 전력을 공급할 수 있다. ESS를 사용하면 에너지 공급안전성을 높일 수 있으며 버려지는 에너지를 저장하여 언제든 공급할 수 있게 된다. 많은 장점을 가진 VRFB 이지만 아직 기술적으로 완전하게 정립되어있지 않기 때문에 성능향상에 대한 연구와 관심이 많다. 우리는 VRFB 의 성능을 높이기 위해 촉매에 대한 연구를 중점적으로 진행해 왔다. B과 N은 일반적으로 전기 전도성을 향상시킨다고 알려진 촉매로서 이를 다공성 carbon 인 MSU-FC에 첨가하여 사용하였다. 이 촉매를 사용함으로서 에너지 밀도와 에너지효율에 성능향상을 보였고 또한 Capacity 또한 유지되는 것을 보였다.
토마토 폐배지를 딸기 수경재배 배지로 재이용 가능성 연구
이규빈,박영훈,최영환,손병구,김준엽,강남준,강점순 한국폐기물자원순환학회 2017 한국폐기물자원순환학회지 Vol.34 No.2
The current study was performed to investigate the effect of recycling coir substrates on the growth, fruit yield, and quality of strawberry plants. Analysis of physical properties revealed that the pH of a fresh coir substrate was 5.04 while those of substrates reused for one and two years were 5.20 and 5.33, respectively. The electrical conductivity (EC) of a new substrate was as high as 4.58 dS·m−1. This can cause salt stress after transplanting. The EC tended to decrease as the substrate was recycled, and the EC of a two-year recycled substrate was 1.48 dS·m−1. The fresh substrate had lower nitrogen and calcium concentrations, but higher phosphate, potassium, and sodium concentrations than the recycled coir substrate. The coir substrates recycled for one or two years maintained better chemical properties for plant growth than the fresh substrate. Strawberry growth varied depending on the number of years that the coir substrate was recycled. In general, strawberries grown in substrates that had been reused for two years did better than those grown in substrates that had been reused once or were fresh. Ninety days after transplanting, a plant grown in a substrate that had been reused for two years contained 25 leaves, which was 3.6 more than with a fresh substrate. In addition, the plants grown in a substrate that had been reused for two years exhibited larger leaf areas than those grown in other substrates. Coir substrates that had been reused for one year increased the number and area of leaves, but not as much as the substrate that had been reused for two years. One- and two-year reused coir substrates increased the weight of strawberries produced relative to the unused substrate, but the difference was not statistically significant. The plants grown in two-year reused substrates were longer and wider, as well. Also, the number of fruits per plant was higher when substrates were reused. Specifically, the number of fruits per plant was 28.7 with a two-year reused substrate, but only 22.2 with a fresh substrate. The fruit color indices (as represented by their Hunter L, a, b values) were not considerably affected by recycling of the coir substrate. The Hunter L value, which indicates the brightness of the fruit, did not change significantly when the substrate was recycled. Neither Hunter a (red) nor b (yellow) values were changed by recycling. In addition, there were no significant changes in the hardnesses, acidities, or soluble solid-acid ratios of fruits grown in recycled substrates. Thus, it is thought that recycling the coir substrate does not affect measures of fruit quality such as color, hardness, and sugar content. Overall, reuse of coir substrates from hydroponic culture as high-bed strawberry growth substrates would solve the problems of new substrate costs and the disposal of substrates that had been used once.