RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        측두골 인부에 발생한 골종 1예

        염진호,박시내,여상원,서병도 대한이비인후과학회 2002 대한이비인후과학회지 두경부외과학 Vol.45 No.9

        Osteoma is a benign bone-forming tumor which is most frequently found in the fronto-ethmoidal area. Although comonly discovered in the external auditory canal of the temporal bone, few cases have been reported in the mastoid or squamous portion of the temporal bone. The authors experienced a case of large osteoma that originated from the squama of temporal bone. We report this rare case and its sucesful management with a review of the literatures. (Korean J Otolaryngol 202; 45:915-7)

      • C-08 : 직접탄소 연료전지(DCFC) 적용 탄소원의 전기저항성 평가

        염진호,정봉진,박형우,이나연 한국폐기물자원순환학회(구 한국폐기물학회) 2013 한국폐기물자원순환학회 추계학술발표논문집 Vol.2013 No.-

        산업화 이후 지속적으로 사용된 화석연료의 고갈에 따라 에너지 수급 등의 문제가 발생하고 있으며, 이에 고효율성을 갖는 새로운 방식의 에너지 기술들이 각광 받는 추세이다. 이 중 직접탄소 연료전지(DCFC)는 탄소연료를 이용하여 전기 에너지로 전환하는 과정 중 가장 효율이 뛰어나고, 오염물질의 발생이 적은 발전 방법으로 기대를 모으고 있으며, 또한 DCFC에 활용할 수 있는 탄소연료는 고등급부터 저등급까지 매우 다양하게 취급할 수 있을 것으로 전망되어진다. 본 연구에서는 직접탄소 연료전지의 연료로 적용 가능한 탄소원을 설정함에 있어 공업분석, CO2 반응성, 열적특성, 황화합물 분포 등의 여러가지 판단 기준 중 전기저항성을 이용한 직접탄소 연료전지(DCFC) 탄소연료 선택의 적용 가능성을 평가하였다. 원료물질의 온도 변화에 따른 전기저항성을 측정하기 위하여 ASTM C 611를 참고하였으며, 이 실험장치는 1300℃까지 승온이 가능한 전기로, 탄소시료 전류측정 홀더, DC Power Supply, Current Meter, Variable Resistor, Volt Meter 등으로 구성되었다. 시료의 전기적 특성 파악을 위하여 설계한 장치에 적합하도록 펠렛 형태로 가공하였다. 스테인레스 재질의 몰드에 압력을 가하여 성형을 하였으며, 성형이 안 될 경우에는 물 혹은 석유계 바인더를 사용하여 성형을 하였다. 펠렛 형태로 성형된 시료는 실험장치의 불활성 분위기내에서 상온에서 900℃까지 승온하며 시료에 대한 전기저항성 변화를 파악하였고, 고유저항의 계산은 일정한 저항과 전원상태에서 온도를 600 ~ 900℃까지의 승온하는 동안 탄소연료의 전압강하를 측정한 후, 성형한 펠렛의 길이와 단면적을 이용하여 각 탄소연료의 전기 저항성을 계산하였다. 전기저항 측정을 위한 적정 전원은 일반적 탄소원인 흑연을 사용하여 5V, 7.5V, 10V로 측정하였다. 5V에서는 온도에 따른 변화를 파악하기 어려웠고, 7.5V와 10V는 유사한 경향성을 보였다. 이러한 결과를 바탕으로 다른 두 시료 카본블랙과 역청탄 촤에 대해서도 5V와 10V로 각각 측정하였고, 카본블랙의 경우 두 전원에 대해 유사한 경향을 보였으나 역청탄 촤의 경우는 5V 보다 10V에서 더 전기저항성이 변화하는 경향을 더 잘 파악할 수 있었다. 탄소연료의 온도 변화에 따른 시료간의 전기저항성을 비교하기 위하여 전원을 10V로 유지하고 실험을 수행 하였다. 그 결과 고등급의 탄소연료인 역청탄 촤의 고유저항이 시작 단계에서 고품위의 흑연, 카본블랙 보다 상당히 높았으나, 900℃ 상태에서 역청탄 촤의 고유저항이 흑연, 카본블랙의 수준까지 내려감을 확인하였고, 이는 직접탄소 연료전지 장치에서 설정하는 반응온도가 900℃ 이상이 되면 탄소연료간의 전기저항성 차이가 작아져서 다양한 탄소연료원을 선택하는데 용이할 것으로 사료된다.

      • KCI등재
      • 직접탄소 연료전지(DCFC) 적용 탄소원의 전기저항성 평가

        염진호,정봉진,박형우,이나연 한국폐기물자원순환학회 2013 한국폐기물자원순환학회 학술대회 Vol.2013 No.2

        산업화 이후 지속적으로 사용된 화석연료의 고갈에 따라 에너지 수급 등의 문제가 발생하고 있으며, 이에 고효율성을 갖는 새로운 방식의 에너지 기술들이 각광 받는 추세이다. 이 중 직접탄소 연료전지(DCFC)는 탄소연료를 이용하여 전기 에너지로 전환하는 과정 중 가장 효율이 뛰어나고, 오염물질의 발생이 적은 발전 방법으로 기대를 모으고 있으며, 또한 DCFC에 활용할 수 있는 탄소연료는 고등급부터 저등급까지 매우 다양하게 취급할 수 있을 것으로 전망되어진다. 본 연구에서는 직접탄소 연료전지의 연료로 적용 가능한 탄소원을 설정함에 있어 공업분석, CO₂ 반응성, 열적특성, 황화합물 분포 등의 여러가지 판단 기준 중 전기저항성을 이용한 직접탄소 연료전지(DCFC) 탄소연료 선택의 적용 가능성을 평가하였다. 원료물질의 온도 변화에 따른 전기저항성을 측정하기 위하여 ASTM C 611를 참고하였으며, 이 실험장치는 1300℃까지 승온이 가능한 전기로, 탄소시료 전류측정 홀더, DC Power Supply, Current Meter, Variable Resistor, Volt Meter 등으로 구성되었다. 시료의 전기적 특성 파악을 위하여 설계한 장치에 적합하도록 펠렛 형태로 가공하였다. 스테인레스 재질의 몰드에 압력을 가하여 성형을 하였으며, 성형이 안 될 경우에는 물 혹은 석유계 바인더를 사용하여 성형을 하였다. 펠렛 형태로 성형된 시료는 실험장치의 불활성 분위기내에서 상온에서 900℃까지 승온하며 시료에 대한 전기저항성 변화를 파악하였고, 고유저항의 계산은 일정한 저항과 전원상태에서 온도를 600 ~ 900℃까지의 승온하는 동안 탄소연료의 전압강하를 측정한 후, 성형한 펠렛의 길이와 단면적을 이용하여 각 탄소연료의 전기저항성을 계산하였다. 전기저항 측정을 위한 적정 전원은 일반적 탄소원인 흑연을 사용하여 5V, 7.5V, 10V로 측정하였다. 5V에서는 온도에 따른 변화를 파악하기 어려웠고, 7.5V와 10V는 유사한 경향성을 보였다. 이러한 결과를 바탕으로 다른 두 시료 카본블랙과 역청탄 촤에 대해서도 5V와 10V로 각각 측정하였고, 카본블랙의 경우 두 전원에 대해 유사한 경향을 보였으나 역청탄 촤의 경우는 5V 보다 10V에서 더 전기저항성이 변화하는 경향을 더 잘 파악할 수 있었다. 탄소연료의 온도 변화에 따른 시료간의 전기저항성을 비교하기 위하여 전원을 10V로 유지하고 실험을 수행하였다. 그 결과 고등급의 탄소연료인 역청탄 촤의 고유저항이 시작 단계에서 고품위의 흑연, 카본블랙 보다 상당히 높았으나, 900℃ 상태에서 역청탄 촤의 고유저항이 흑연, 카본블랙의 수준까지 내려감을 확인하였고, 이는 직접탄소 연료전지 장치에서 설정하는 반응온도가 900℃ 이상이 되면 탄소연료간의 전기저항성 차이가 작아져서 다양한 탄소연료원을 선택하는데 용이할 것으로 사료된다.

      • 스마트시티에서 활용 가능한 LoRa기반 화재 대피 경로 안내 시스템

        염진호(Jinho Yeom),조성우(Seongwoo Jo),양서린(Seorin Yang),김경백(Kyungbaek Kim) 한국정보과학회 2021 한국정보과학회 학술발표논문집 Vol.2021 No.6

        최근 국내에서 스마트시티 조성이 활성화됨에 따라 이에 적합한 LoRa 통신을 중심으로 연구를 진행하였다. 본 논문에서는 현재 사용 중인 수동형 대피체계의 한계를 보완하고자 화재 상황에 따른 방향 지시 서비스를 구현하였다. 저전력 장거리 통신이 가능한 LoRa 모듈을 이용해 통신망을 구축하였다. 화재 발생 시 CSI 카메라 모듈을 이용한 YOLO 객체 탐지와 온습도 센서를 통해 건물 내부의 혼잡도와 상황을 파악한다. 이러한 데이터를 바탕으로 총 대피시간을 단축시킬 수 있는 대피알고리즘에 적용해 최적의 대피 경로를 안내하는 화재 대피 경로 안내 시스템 개발을 제안한다.

      • C-30 : 고유황 석탄의 황 형태별 정량 연구

        박형우,정봉진,염진호,이나연 한국폐기물자원순환학회(구 한국폐기물학회) 2013 한국폐기물자원순환학회 추계학술발표논문집 Vol.2013 No.-

        자원 고갈로 인해 원자재 가격 상승과 고유가 문제를 해결하기 위한 대안 중 하나로 저가의 고유황 석탄의 사용이 고려되고 있다. 생산공정에서 고유황 석탄의 사용은 원가절감의 큰 효과를 얻을 수 있다. 하지만 높은 황함량에 따른 다량의 황화합물의 배출로 대기오염 및 설비의 부식에 대한 문제가 예상된다. 그렇기 때문에 최근 고유황 석탄으로부터 발생되는 화합물에 대한 특성을 파악하는 연구가 활발히 진행되고 있다. 본 연구에서는 고유황 석탄의 유기황, 무기황의 분포를 파악하였다. 일반적으로 석탄에 함유된 황성분은 크게 무기질과 유기질의 두가지 형태로 나눌 수가 있다. 무기황 성분은 대부분 pyrite 형태로 존재하고, 유기황 성분은 크게 thiols, sulfides, disulfides, thiopenes의 혼합형태로 존재하게 된다. 이와 같이 다양한 화합물의 혼합형태로 석탄에 함유된 황성분은 석탄전환 과정에서 분해 및 화학반응을 거치게 된다. 석탄이 고온에서 열분해가 일어나면 석탄중에 함유된 무기질 및 유기질 황성분이 분해를 시작하여 H2S, COS, CS2 등으로 변환되어 각 반응기 내에서 고체물질과 반응하여 순환된다. 여기서 저가 고유황 석탄의 사용량을 증가시킬 경우에 수처리 설비 및 가스 청정계에 부하를 더 심화될 수 있다. 따라서 저가 고유황 석탄의 열전환과정에서 석탄으로부터 방출되는 황화합물에 대한 특성 연구를 통하여 황의 반응특성 해석 및 순환과정을 정량적으로 파악할 수 있어야 한다. 석탄의 황 형태별 분포 비율을 알기 위해서 총 황함량과 무기황의 함량을 분석해야 한다. 이때 무기황의 분석은 아래와 같은 4단계의 과정을 거쳐서 진행이 된다. 석탄 시료를 묽은 염산 및 질산 환류 용액 내에서 황산염과 황철광의 용해도 차이를 이용하여 용액 내에서 연속적으로 취하고 직접 정량한다. 1단계는 황산염 및 황산철의 황 성분 분리 단계, 2단계는 황산염 황 정량 단계, 3단계는 황철광 황의 정량 단계, 4단계는 유기황의 정량 단계로 구분이 된다. 고유황 역청탄의 실험결과 총 황함량은 2.82wt.% 이고, pyritic sulfur 함량은 1.186wt.%, sulfate sulfur 함량은 0.026wt.%, 유기황 함량은 1.608wt.% 이다. 총 황함량 중에서 황 형태별 분포 비율을 보면 유기황 함량 비율이 57.09%, pyritic sulfur 함량 비율이 42.2%, sulfate sulfur 함량 비율이 1.06%로 총 황함량 중에서 유기황 함량 비율이 약 57%로 무기황 함량 비율보다 약간 높음을 알 수가 있다. 또한 무기황과 유기황의 비율(Inorganic S/Organic S)은 0.754, pyritic sulfur와 유기황의 비율(Pyritic S/Organic S)은 0.738을 나타내었다.

      • 고유황 석탄의 황 형태별 정량 연구

        박형우,정봉진,염진호,이나연 한국폐기물자원순환학회 2013 한국폐기물자원순환학회 학술대회 Vol.2013 No.2

        자원 고갈로 인해 원자재 가격 상승과 고유가 문제를 해결하기 위한 대안 중 하나로 저가의 고유황 석탄의 사용이 고려되고 있다. 생산공정에서 고유황 석탄의 사용은 원가절감의 큰 효과를 얻을 수 있다. 하지만 높은 황함량에 따른 다량의 황화합물의 배출로 대기오염 및 설비의 부식에 대한 문제가 예상된다. 그렇기 때문에 최근 고유황 석탄으로부터 발생되는 화합물에 대한 특성을 파악하는 연구가 활발히 진행되고 있다. 본 연구에서는 고유황 석탄의 유기황, 무기황의 분포를 파악하였다. 일반적으로 석탄에 함유된 황성분은 크게 무기질과 유기질의 두가지 형태로 나눌 수가 있다. 무기황 성분은 대부분 pyrite 형태로 존재하고, 유기황 성분은 크게 thiols, sulfides, disulfides, thiopenes의 혼합형태로 존재하게 된다. 이와 같이 다양한 화합물의 혼합형태로 석탄에 함유된 황성분은 석탄전환 과정에서 분해 및 화학반응을 거치게 된다. 석탄이 고온에서 열분해가 일어나면 석탄중에 함유된 무기질 및 유기질 황성분이 분해를 시작하여 H₂S, COS, CS₂ 등으로 변환되어 각 반응기 내에서 고체물질과 반응하여 순환된다. 여기서 저가 고유황 석탄의 사용량을 증가시킬 경우에 수처리 설비 및 가스 청정계에 부하를 더 심화될 수 있다. 따라서 저가 고유황 석탄의 열전환과정에서 석탄으로부터 방출되는 황화합물에 대한 특성 연구를 통하여 황의 반응특성 해석 및 순환과정을 정량적으로 파악할 수 있어야 한다. 석탄의 황 형태별 분포 비율을 알기 위해서 총 황함량과 무기황의 함량을 분석해야 한다. 이때 무기황의 분석은 아래와 같은 4단계의 과정을 거쳐서 진행이 된다. 석탄 시료를 묽은 염산 및 질산 환류 용액 내에서 황산염과 황철광의 용해도 차이를 이용하여 용액 내에서 연속적으로 취하고 직접 정량한다. 1단계는 황산염 및 황산철의 황 성분 분리 단계, 2단계는 황산염 황 정량 단계, 3단계는 황철광 황의 정량 단계, 4단계는 유기황의 정량 단계로 구분이 된다. 고유황 역청탄의 실험결과 총 황함량은 2.82wt.% 이고, pyritic sulfur 함량은 1.186wt.%, sulfate sulfur 함량은 0.026wt.%, 유기황 함량은 1.608wt.% 이다. 총 황함량 중에서 황 형태별 분포 비율을 보면 유기황 함량 비율이 57.09%, pyritic sulfur 함량 비율이 42.2%, sulfate sulfur 함량 비율이 1.06%로 총 황함량 중에서 유기황 함량 비율이 약 57%로 무기황 함량 비율보다 약간 높음을 알 수가 있다. 또한 무기황과 유기황의 비율(Inorganic S/Organic S)은 0.754, pyritic sulfur와 유기황의 비율(Pyritic S/Organic S)은 0.738을 나타내었다.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼