RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Correlation of band electronic structure with efficiency in perovskite solar cells with vanadium (Ⅳ) oxide thin film buffers

        엄기령,유일한,Sial Qadeer Akbar,서형택 한국물리학회 2021 Current Applied Physics Vol.23 No.-

        Perovskite solar cells have been studied extensively in the area of perovskite solar cells because they have a comparatively free hysteresis. Through fabrication of a perovskite solar cell based on a vanadium oxide buffer, this study clarified the mechanism of electron and hole transport in the laminated layer upon irradiation with light. The power conversion efficiency (PCE) of the Vanadium (Ⅳ) oxide (VO2) sputtering process device was approximately 13% and with the spin-coating process was 8.5%. To investigate the physicochemical origin of such PCE differences depending on the process type, comprehensive band alignment and band structure analyses of the actual cell stacks were performed using X-ray photoelectron spectroscopy depth measurements. Accordingly, it was found that the inconsistent valence band offset between the perovskite absorption layer and V2O5 layer as a function of the VO2 process type caused a difference in the hole transport, resulting in the difference in the efficiency.

      • KCI등재

        Photocatalytic degradation characteristics of heterojunction SnO2-CuxO nanopowders of methylene blue under UV light

        엄기령,유일한,Kalanur Shankara Sharanappa,서형탁 한국화학공학회 2021 Korean Journal of Chemical Engineering Vol.38 No.3

        p-n heterojunction was constructed using p-type Cupric oxide (CuO) and n-type Tin (IV) oxide (SnO2) nanoparticles using chemical synthesis and annealing method. The synthesized SnO2-CuO nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), etc. The methylene blue (MB) degradation ability of the synthesized SnO2- CuO nanocomposite was investigated under UV illumination. Compared to the undoped SnO2, the SnO2-CuO p-n heterojunction exhibited enhanced MB degradation capability due the effective separation of electron-holes pair that suppresses the recombination. Based on the experimental results, the charge dynamics and the probable dye degradation mechanism via SnO2-CuO nanoparticles was proposed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼