RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        LNG 터미널 송출 운전 최적화 사례 연구

        박찬샘 ( Chan Saem Park ),한종훈 ( Chong Hun Han ) 한국화학공학회 2015 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.53 No.2

        Recently, LNG receiving terminals have been widely constructed and expanded for an increase in LNG demand. Selection of the storage tank for send-out and estimation of send-out flow rate have significant influence to process operation and economics. In this study, a send-out flow rate of each storage tank is optimized in order to minimize the total BOG generation rate. Considering a size and characteristic of each storage tanks, BOG flow rates are estimated using a dynamic simulation with varying liquid levels in the tanks. The regression model is developed fitting BOG flow rates and tank liquid levels, which are boil off rate model to predict BOG flow rates with particular level data. The objective function and constraints including required total send-out flow rate and level limit in the tanks are formulated to optimize a send-out flow rate of each tank. This method for optimization of send-out operation is applied to the Incheon LNG receiving terminal considering two scenarios for various liquid levels and maximum and minimum required send-out flow rates. For maximum required send-out flow rate, this method achieves BOG reduction of 9% comparing with assumed conventional operation.

      • SCOPUSKCI등재

        연료전지차량용 연료개질기에 대한 최적연료비교연구

        정익환 ( Ik Hwan Jung ),박찬샘 ( Chan Saem Park ),박성호 ( Seong Ho Park ),나종걸 ( Jong Geol Na ),한종훈 ( Chong Hun Han ) 한국화학공학회 2014 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.52 No.6

        PEM fuel cell vehicles have been getting much attraction due to a sort of highly clean and effective transportation. The onboard fuel processor, however, is inevitably required to supply the hydrogen by conversion from some fuels since there are not enough available hydrogen stations nearby. A lot of studies have been focused on analyses of ATR reactor under the assumption of thermo-neutral condition and those of the optimized process for the minimization of energy consumption using thermal efficiency as an objective function, which doesn’t guarantee the maximum hydrogen production. In this study, the analysis of optimization for 100 kW PEMFC onboard fuel processor was conducted targeting various fuels such as gasoline, LPG, diesel using newly defined hydrogen efficiency and keeping simply synthesized heat exchanger network regardless of external utilities leading to compactness and integration. Optimal result of gasoline case shows 9.43% reduction compared to previous study, which shows the newly defined objective function leads to better performance than thermal efficiency in terms of hydrogen production. The sensitivity analysis was also done for hydrogen efficiency, heat recovery of each heat exchanger, and the cost of each fuel. Finally, LPG was estimated as the most economical fuel in Korean market.

      • KCI등재

        LNG 터미널 유량 보정 방법 개발

        이상호(Sang Ho Lee),이철진(Chul Jin Lee),임영섭(Young Sub Lim),박찬샘(Chan Saem Park),한종훈(Chong Hun Han) 한국가스학회 2010 한국가스학회지 Vol.14 No.6

        국내의 LNG 터미널은 일반적으로 대형화 되어있다. 그런데 이런 대형화된 터미널의 안전한 관리를 위해서는 전시설에 대한 온도 관측이 필요하며 따라서 터미널 내 모든 시설에는 온도센서가 다수 존재한다. 하지만 터미널의 운영, 관리 및 안전사고 예방을 위해서 또 파악해야 하는 정보 중 하나가 유량인데 보통 부족한 경우가 많다. 그런데 배관의 온도 정보는 유량과 밀접한 관련을 맺고 있고 이를 통해 유량은 몇 가지 가정을 통해서 쉽게 추산할 수 있다. 이렇게 발생된 유량 데이터는 오차를 갖고 있을 수 있기 때문에 이를 정상상태 데이터 보정(steady state data reconciliation)을 활용하면 보다 신뢰성 있는 데이터를 얻을 수 있다. 본 논문에서는 이러한 LNG 터미널 데이터 보정 방법에 대해 설명하고 사례연구를 통해 얼마나 신뢰성 있는 데이터를 제공하는지에 대해서 기술하고자 한다. Especially in Korea, LNG terminals commonly have huge scale because of the high demand of natural gas, and for the safe operation of terminal wide observation on temperature is necessary. That is the reason why the terminal has thermometer all over the facility but another information, flow rate, is insufficient. By the way, in pipeline, temperature difference is highly related with flow rate and with some simple assumptions, we can estimate flow rate. And through the steady state data reconciliation, the flow rate data become more reliable. In this research, we will study about flow rate data reconciliation method for LNG terminal and case study.

      • SCOPUSKCI등재

        전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기의 채널 구조 영향 분석

        나종걸 ( Jong Geol Na ),정익환 ( Ik Hwan Jung ),( Krishnadash S. Kshetrimayum ),박성호 ( Seong Ho Park ),박찬샘 ( Chan Saem Park ),한종훈 ( Chong Hun Han ) 한국화학공학회 2014 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.52 No.6

        Driven by both environmental and economic reasons, the development of small to medium scale GTL(gasto- liquid) process for offshore applications and for utilizing other stranded or associated gas has recently been studied increasingly. Microchannel GTL reactors have been prefrered over the conventional GTL reactors for such applications, due to its compactness, and additional advantages of small heat and mass transfer distance desired for high heat transfer performance and reactor conversion. In this work, multi-microchannel reactor was simulated by using commercial CFD code, ANSYS FLUENT, to study the geometric effect of the microchannels on the heat transfer phenomena. A heat generation curve was first calculated by modeling a Fischer-Tropsch reaction in a single-microchannel reactor model using Matlab-ASPEN integration platform. The calculated heat generation curve was implemented to the CFD model. Four design variables based on the microchannel geometry namely coolant channel width, coolant channel height, coolant channel to process channel distance, and coolant channel to coolant channel distance, were selected for calculating three dependent variables namely, heat flux, maximum temperature of coolant channel, and maximum temperature of process channel. The simulation results were visualized to understand the effects of the design variables on the dependent variables. Heat flux and maximum temperature of cooling channel and process channel were found to be increasing when coolant channel width and height were decreased. Coolant channel to process channel distance was found to have no effect on the heat transfer phenomena. Finally, total heat flux was found to be increasing and maximum coolant channel temperature to be decreasing when coolant channel to coolant channel distance was decreased. Using the qualitative trend revealed from the present study, an appropriate process channel and coolant channel geometry along with the distance between the adjacent channels can be recommended for a microchannel reactor that meet a desired reactor performance on heat transfer phenomena and hence reactor conversion of a Fischer-Tropsch microchannel reactor.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼