http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
부산지역 교통관련 기사를 이용한 비정형 빅데이터의 정형화와 시각적 해석
이경준,노윤환,윤상경,조영석,Lee, Kyeongjun,Noh, Yunhwan,Yoon, Sanggyeong,Cho, Youngseuk 한국데이터정보과학회 2014 한국데이터정보과학회지 Vol.25 No.6
We analyzed the articles from "Kukje Shinmun" and "Busan Ilbo", which are two local newpapers of Busan Metropolitan City. The articles cover from January 1, 2013 to December 31, 2013. Meaningful pattern inherent in 2889 articles of which the title includes "Busan" and "Traffic" and related data was analyzed. Textmining method, which is a part of datamining, was used for the social network analysis (SNA). HDFS and MapReduce (from Hadoop ecosystem), which is open-source framework based on JAVA, were used with Linux environment (Uubntu-12.04LTS) for the construction of unstructured data and the storage, process and the analysis of big data. We implemented new algorithm that shows better visualization compared with the default one from R package, by providing the color and thickness based on the weight from each node and line connecting the nodes.
도로위의 기상요인이 교통사고에 미치는 영향 - 부산지역을 중심으로 -
이경준,정임국,노윤환,윤상경,조영석,Lee, Kyeongjun,Jung, Imgook,Noh, Yunhwan,Yoon, Sanggyeong,Cho, Youngseuk 한국데이터정보과학회 2015 한국데이터정보과학회지 Vol.26 No.3
Them traffic accidents have been increased every year due to increasing of vehicles numbers as well as the gravitation of the population. The carelessness of drivers, many road weather factors have a great influence on the traffic accidents. Especially, the number of traffic accident is governed by precipitation, visibility, humidity, cloud amounts and temperature. The purpose of this paper is to analyse the effect of road weather factors on traffic accident. We use the data of traffic accident, AWS weather factors (precipitation, existence of rainfall, temperature, wind speed), time zone and day of the week in 2013. We did statistical analysis using logistic regression analysis and decision tree analysis. These prediction models may be used to predict the traffic accident according to the weather condition.
정임국(Imgook Jung),노윤환(Yunhwan Noh),조영석(Youngseuk Cho) 한국데이터정보과학회 2018 한국데이터정보과학회지 Vol.29 No.3
관찰연구 (observational study)에서 사건이 발생한 관측데이터와 사건이 발생하지 않은 관측데이터는 연구 참여 이전에 다른 성향의 데이터일 가능성이 높고, 표본선택 편의 (sample selection bias)의 발생 가능성이 높아지게 된다. 또한 관심 있는 사건이 발생한 관측데이터와 그렇지 않은 관측데이터 수의 불일치가 일어날 가능성이 매우 높다. 이러한 불균형을 해결하는 방법으로 성향점수매칭(propensity score matching: PSM)이 사용되고 있다. 본 논문은 표본선택 편의와 관측데이터 수의 불균형을 해결하기 위해 새로운 방법을 제안하고 그 결과를 비교하고자 한다. In this article, we propose a statistical method to find the equivalent group in observational data by using conversion score. In observational study, treatment group and control group are likely to be different groups before research participation. Thus the difference makes rise of selection bias occurrence possibility. In addition, selection bias makes difference between treatment group and control group. One of the methods to overcome the imbalance is propensity score matching (PSM). For case analysis, we use the 2014 traffic accident data.