http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Covalent Organic Framework (COF-10)를 이용한 암모니아 흡착 및 탈착에 관한 연구
양희나 ( Heena Yang ),김익태 ( Iktae Kim ),고영돈 ( Youngdon Ko ),김신동 ( Shindong Kim ),김화중 ( Whajung Kim ) 한국공업화학회 2016 공업화학 Vol.27 No.3
Ammonia gas as a hydrogen source has received great attention since the importance of hydrogen gas as a clean energy source increased. However, ammonia is toxic and corrosive to metal such that the absorbent that can store and transport ammonia became an important issue. As an effort to solve this, a large pored covalent organic framework, COF-10 was proposed as an adsorbent for storage and safe transportation of ammonia. During the ammonia adsorption process, boron in COF-10 structure can act as a Lewis acid site and bind with ammonia. In this study, COF was synthesized and its structure was identified by BET, XRD and FT-IR. The adsorption characteristics of COF were investigated by TPD and adsorption isotherm. The COF-10 showed an excellent adsorption capacity for ammonia (9.79 mmol/g) which could be utilized as an ammonia adsorbent.
In-situ 졸-겔 법을 이용한 저가습 작동용 수소 이온 교환막 연료전지용(PEMFC) 나피온/TiO<sub>2</sub> 복합막
최범석 ( Beomseok Choi ),고영돈 ( Youngdon Ko ),김화중 ( Whajung Kim ) 한국공업화학회 2019 공업화학 Vol.30 No.1
Nafion/TiO<sub>2</sub> composite membranes were prepared via an in-situ sol-gel process with different immersing periods from 1 day to 7 days for the low humidifying proton exchange membrane fuel cell. As the immersing time increased, the TiO<sub>2</sub> content within the Nafion membrane increased. The contact angle decreased with the increased TiO<sub>2</sub> content in the composite membrane due to the increased hydrophilicity. The water uptake and proton conductivity reached to the highest level for 4 day immersing period, then decreased as the immersing period increased. A 7 days of immersing time was shown to be too long because too much TiO<sub>2</sub> aggregates were formed on the membrane surface as well as interior of the membrane, interfering the proton transfer from anode to cathode. Cell performance results were in good agreement with those of the water uptake and proton conductivity; current densities under a relative humidity (RH) of 40% were 0.54, 0.6, 0.63 A/㎠ and 0.49 A/㎠ for the immersing time of 1, 3, 4 and 7 days, respectively at a 0.6 V. The composite membrane prepared via the in-situ sol-gel process exhibited the enhancement in the cell performance under of RH 40% by a maximum of about 66% compared to those of using the recasting composite membrane and Nafion 115.