RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        중앙난방방식을 지역난방과 소형열병합난방 방식으로 전환 시 경제성 비교 분석

        김규생(Kyu Saeng Kim) 대한설비공학회 2015 설비공학 논문집 Vol.27 No.10

        This study was conducted to determine the LCC of apartment complexes with district heating and a cogeneration system. For the purpose of analyzing LCC according to the size of the apartment complex, 500, 1,500, and 4,000-unit model apartments were selected. Analysis was performed on the design of the heating system and the life cycle cost including total construction cost, maintenance and operation cost for the duration of the project period (15 years). According to the calculated results, 1) The initial cost of the cogeneration system for 500, 1,500, and 4,000-unit apartments is higher than that of the district heating system by 20%, 13%, and 12%, respectively. 2) In the case of the cogeneration system, the payback period by electric generation was found to be 5.21, 4.92 and 4.47 years, and saving cost was calculated to be 29 billion won, 94 billion won and 262 billion won after the payback period for 500, 1,500, and 4,000-unit apartments, respectively. 3) The LCC values of the cogeneration system were 1.12, 1.07 and 1.06 times larger than those of the district system according to the size of the apartment complex. In this study, the district heating system was found to be more efficient than the cogeneration system in terms of LCC reduction. 4) District heating is affected by fuel bills, so energy efficiency should be improved through recovering waste heat (incineration heat, etc.). Also, district cooling should be provided according to heat use to keep the temperature high in winter and low in summer.

      • KCI등재

        초ㆍ중ㆍ고등학교 시설의 급수 사용량에 대한 연구

        김규생(Kyu-Saeng Kim) 대한설비공학회 2008 설비공학 논문집 Vol.20 No.12

        A Study on Typical Rates of Water-use for School Facilities has been carried out in this work. Water supply system is given much weight in school facilities. Therefore, it set up a basis efficiency using of water sources to calculate typical rates of water use. The results are summarized as follows; 1) On the whole, typical rates of water-use was founded out 15ℓ/stu. d in pirmary school, 10ℓ/stu. d in middle school and 30ℓ/stu. d in high school smaller than the existing it. It was rate of water-use change as season and Max. Rates of water-use was July. 2) I deem that school hours are 5 hour’s in primary school, 7 hour’s in middle school and 8 hour’s in high school. It the concept of 1 hour that is lesson time 40 minutes and resting time 10 minutes in primary school, lesson time 45 minutes and resting time 10 minutes in middle school and lesson time 50 minutes and resting time 10 minutes in high school. 3) It is desired that we calculate the volume of pump and water tank throughout this concept and the size of water tank should be 1.5 times with taking peak load into consideration by this study on typical rate of water-use. 4) The amount of using water increases in gradually and I consider the life cycle of facilities is more than 10 years. As a result, I can forecast that the size will be insufficiency but I deem that if we devise a plan about parallel pumping on water tank space, we can cope with it. Also, it is expected that we can cut back the transport energy by controlling pump volume.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼