RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Enzyme-Catalyzed Henry Reaction in Choline Chloride-Based Deep Eutectic Solvents

        ( Xue Mei Tian ),( Suo Qin Zhang ),( Liang Yu Zheng ) 한국미생물 · 생명공학회 2016 Journal of microbiology and biotechnology Vol.26 No.1

        The enzyme-catalyzed Henry reaction was realized using deep eutectic solvents (DESs) as a reaction medium. The lipase from Aspergillus niger (lipase AS) showed excellent catalytic activity toward the substrates aromatic aldehydes and nitromethane in choline chloride:glycerol at a molar ratio of 1:2. Addition of 30 vol% water to DES further improved the lipase activity and inhibited DES-catalyzed transformation. A final yield of 92.2% for the lipase AS-catalyzed Henry reaction was achieved under optimized reaction conditions in only 4 h. In addition, the lipase AS activity was improved by approximately 3-fold in a DES.water mixture compared with that in pure water, which produced a final yield of only 33.4%. Structural studies with fluorescence spectroscopy showed that the established strong hydrogen bonds between DES and water may be the main driving force that affects the spatial conformation of the enzyme, leading to a change in lipase activity. The methodology was also extended to the aza-Henry reaction, which easily occurred in contrast to that in pure water. The enantioselectivity of both Henry and aza-Henry reactions was not found. However, the results are still remarkable, as we report the first use of DES as a reaction medium in a lipase-catalyzed Henry reaction.

      • KCI등재

        Study on the effect of vacuum fusion infiltration technology on the properties of tungsten/copper joining interface

        Zhang Hao-Jie,Tian Xue-qin,Ding Xiao-Yu,Zheng Hui-Yun,Luo Lai-Ma,Wu Yu-Cheng,Yao Jian-Hua 한국원자력학회 2024 Nuclear Engineering and Technology Vol.56 No.6

        In this paper, based on the need for high-strength connections between all-tungsten-oriented plasma materials and thermal sinking materials of copper and its alloys in nuclear fusion devices, a study on the effect of tungsten surface laser micro structuring on the interfacial bonding properties of W/Cu joints was carried out. In the experiment, the connectors were prepared by vacuum fusion infiltration technology, and the effects of microgroove structure on the mechanical and thermal conductivity of W/Cu connectors were investigated under different parameters (including microgroove pitch, microgroove depth, and microgroove taper). The maximum shear strength is 126.0 MPa when the pitch is 0.15 mm and the depth is 34 μm. In addition, the negative taper structure, i.e., the width of the entrance of the microstructure is smaller than the width of the interior of the microstructure, is also investigated. The shear tests show that there is an approximately linear relationship between the shear strength of W/Cu and taper. Compared with the positive taper, the shear strength of the samples with the same morphological density and depth of the tungsten surface is significantly higher.

      • Residential Radon and Lung Cancer Risk: An Updated Meta-analysis of Case-control Studies

        Zhang, Zeng-Li,Sun, Jing,Dong, Jia-Yi,Tian, Hai-Lin,Xue, Lian,Qin, Li-Qiang,Tong, Jian Asian Pacific Journal of Cancer Prevention 2012 Asian Pacific journal of cancer prevention Vol.13 No.6

        Background: Numbers of epidemiological studies assessing residential radon exposure and risk of lung cancer have yielded inconsistent results. Methods: We therefore performed a meta-analysis of relevant published case-control studies searched in the PubMed database through July 2011 to examine the association. The combined odds ratio (OR) were calculated using fixed- or random-effects models. Subgroup and dose-response analyses were also performed. Results: We identified 22 case-control studies of residential radon and lung cancer risk involving 13,380 cases and 21,102 controls. The combined OR of lung cancer for the highest with the lowest exposure was 1.29 (95% CI 1.10-1.51). Dose-response analysis showed that every 100 Bq/$m^3$ increment in residential radon exposure was associated with a significant 7% increase in lung cancer risk. Subgroup analysis displayed a more pronounced association in the studies conducted in Europe. Studies restricted to female or non-smokers demonstrated weakened associations between exposure and lung cancer. Conclusions: This meta-analysis provides new evidence supporting the conclusion that residential exposure to radon can significantly increase the risk of lung cancer in a dose-response manner.

      • KCI등재

        Analysis the role of arabidopsis CKRC6/ASA1 in auxin and cytokinin biosynthesis

        Dong-Wei Di,Lei Wu,Pan Luo,Li Zhang,Tian-Zi Zhang,Xue Sun,Shao-Dong Wei,Chen-Wei An,Guang-Qin Guo 한국식물학회 2016 Journal of Plant Biology Vol.59 No.2

        The crosstalk between auxin and cytokinin (CK) is important for plant growth and development, although the underlying molecular mechanisms remain unclear. Here, we describe the isolation and characterization of a mutant of Arabidopsis Cytokinin-induced Root Curling 6 (CKRC6), an allele of ANTHRANILATE SYNTHASE ALPHA SUBUNIT 1 (ASA1) that encodes the á-subunit of AS in tryptophan (Trp) biosynthesis. The ckrc6 mutant exhibits root gravitropic defects and insensitivity to both CK and the ethylene precursor 1-aminocyclopropane-1-carboxylicacid (ACC) in primary root growth. These defects can be rescued by exogenous indole-3-acetic acid (IAA) or tryptophan (Trp) supplementation. Furthermore, our results suggest that the ckrc6 mutant has decreased IAA content, differential expression patterns of auxin biosynthesis genes and CK biosynthesis isopentenyl transferase (IPT) genes in comparison to wild type. Collectively, our study shows that auxin controls CK biosynthesis based on that CK sensitivity is altered in most auxin-resistant mutants and that CKs promote auxin biosynthesis but inhibit auxin transport and response. Our results also suggest that CKRC6/ASA1 may be located at an intersection of auxin, CK and ethylene metabolism and/or signaling.

      • SCIESCOPUSKCI등재

        Construction of a New Agrobacterium tumefaciens-Mediated Transformation System based on a Dual Auxotrophic Approach in Cordyceps militaris

        Huan huan Yan,Yi tong Shang,Li hong Wang,Xue qin Tian,Van-Tuan Tran,Li hua Yao,Bin Zeng,Zhi hong Hu The Korean Society for Microbiology and Biotechnol 2024 Journal of microbiology and biotechnology Vol.34 No.5

        Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.

      • SPON2 Promotes M1-like Macrophage Recruitment and Inhibits Hepatocellular Carcinoma Metastasis by Distinct Integrin–Rho GTPase–Hippo Pathways

        Zhang, Yan-Li,Li, Qing,Yang, Xiao-Mei,Fang, Fang,Li, Jun,Wang, Ya-Hui,Yang, Qin,Zhu, Lei,Nie, Hui-Zhen,Zhang, Xue-Li,Feng, Ming-Xuan,Jiang, Shu-Heng,Tian, Guang-Ang,Hu, Li-Peng,Lee, Ho-Young,Lee, Su-J American Association for Cancer Research 2018 Cancer research Vol.78 No.9

        <P>Matricellular protein SPON2 acts as an HCC suppressor and utilizes distinct signaling events to perform dual functions in HCC microenvironment.</P><P>Tumor-associated macrophages (TAM) represent key regulators of the complex interplay between cancer and the immune microenvironment. Matricellular protein SPON2 is essential for recruiting lymphocytes and initiating immune responses. Recent studies have shown that SPON2 has complicated roles in cell migration and tumor progression. Here we report that, in the tumor microenvironment of hepatocellular carcinoma (HCC), SPON2 not only promotes infiltration of M1-like macrophages but also inhibits tumor metastasis. SPON2-α4β1 integrin signaling activated RhoA and Rac1, increased F-actin reorganization, and promoted M1-like macrophage recruitment. F-Actin accumulation also activated the Hippo pathway by suppressing LATS1 phosphorylation, promoting YAP nuclear translocation, and initiating downstream gene expression. However, SPON2-α5β1 integrin signaling inactivated RhoA and prevented F-actin assembly, thereby inhibiting HCC cell migration; the Hippo pathway was not noticeably involved in SPON2-mediated HCC cell migration. In HCC patients, SPON2 levels correlated positively with prognosis. Overall, our findings provide evidence that SPON2 is a critical factor in mediating the immune response against tumor cell growth and migration in HCC.</P><P><B>Significance:</B> Matricellular protein SPON2 acts as an HCC suppressor and utilizes distinct signaling events to perform dual functions in HCC microenvironment.</P><P><B>Graphical Abstract:</B> http://cancerres.aacrjournals.org/content/canres/78/9/2305/F1.large.jpg. <I>Cancer Res; 78(9); 2305–17. ©2018 AACR</I>.</P><P><B>Graphical Abstract</B></P><P> [Figure]</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼