RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재
      • KCI등재

        A Strategy for the Simulation of Adhesive Layers

        Ochsner, A.,Mishuris, G.,Gracio, J. The Society of Adhesion and Interface 2005 접착 및 계면 Vol.6 No.1

        The high accurate simulation of very thin glue layers based on the finite element method is still connected to many problems which result from the necessity to construct a complicated mesh of essentially different sizes of elements. This can lead to a loss of accuracy, unstable calculations and even loss of convergence. However, the implementation of special transmission elements along the glue ling and special edge-elements in the near-edge region would lead to a dramatic decrease of number of finite elements in the mesh and thus, prevent unsatisfactory phenomena in numerical analysis and extensive computation time. The theoretical basis for such special elements is the knowledge about appropriate transmission conditions and the edge effects near the free boundary of the adhesive layer. Therefore, recently proposed so-called non-classical transmission conditions and the behavior near the free edge are investigated in the context of the single-lap tensile-shear test of adhesive technology.

      • SCIESCOPUS

        The uniaxial strain test - a simple method for the characterization of porous materials

        Fiedler, T.,Ochsner, A.,Gracio, J. Techno-Press 2006 Structural Engineering and Mechanics, An Int'l Jou Vol.22 No.1

        The application of cellular materials in load-carrying and security-relevant structures requires the exact prediction of their mechanical behavior, which necessitates the development of robust simulation models and techniques based on appropriate experimental procedures. The determination of the yield surface requires experiments under multi-axial stress states because the yield behavior is sensitive to the hydrostatic stress and simple uniaxial tests aim only to determine one single point of the yield surface. Therefore, an experimental technique based on a uniaxial strain test for the description of the influence of the hydrostatic stress on the yield condition in the elastic-plastic transition zone at small strains is proposed and numerically investigated. Furthermore, this experimental technique enables the determination of a second elastic constant, e.g., Poisson's ratio.

      • KCI등재

        Analytic adherend deformation correction in the new ISO 11003-2 standard: Should it really be applied?

        Ochsner, A.,Gegner, J.,Gracio, J. The Society of Adhesion and Interface 2004 접착 및 계면 Vol.5 No.2

        For reliable determination of mechanical characteristics of adhesively bonded joints used e.g. as input data for computer-aided design of complex components, the thick-adherend tensile-shear test according to ISO 11003-2 is the most important material testing method. Although the total displacement of the joint is measured across the polymer layer directly in the overlap zone in order to minimize the influence of the stepped adherends, the substrate deformation must be taken into account within the framework of the evaluation of the shear modulus and the maximum shear strain, at least when high-strength adhesives are applied. In the standard ISO 11003-2 version of 1993, it was prescribed to perform the substrate deformation correction by means of testing a one-piece reference specimen. The authors, however, pointed to the excessive demands on the measuring accuracy of the extensometers connected with this technique in industrial practice and alternatively proposed a numerical deformation analysis of a dummy specimen. This idea of a mathematical correction was included in the revised ISO 11003-2 version of 2001 but in the simplified form of an analytical method based on Hooke's law of elasticity for small strains. In the present work, it is shown that both calculation techniques yield considerably discordant results. As experimental assessment would require high-precision distance determination (e.g. laser extensometer), finite element analyses of the deformation behavior of the bonded joint are performed in order to estimate the accuracy of the obtained substrate deformation corrections. These simulations reveal that the numerical correction technique based on the finite element deformation modeling of the reference specimen leads to considerably more realistic results.

      • KCI등재후보
      • Plastic Instability in Complex Strain Paths Predicted by Advanced Constitutive Equations

        Marilena.C. Butuc,Frederic Barlat,Jose J. Gracio,Gabriela Vincze 한국소성가공학회 2011 기타자료 Vol.2011 No.8

        The present paper aims at predicting plastic instabilities under complex loading histories using an advanced sheet metal forming limit model. The onset of localized necking is computed using the Marciniak-Kuczinsky (MK) analysis [1] with a physically-based hardening model and the phenomenological anisotropic yield criterion Yld2000-2d [2]. The hardening model accounts for anisotropic work-hardening induced by the microstructural evolution at large strains, which was proposed by Teodosiu and Hu [3]. Simulations are carried out for linear and complex strain paths. Experimentally, two deep-drawing quality sheet metals are selected: a bake-hardening steel (BH) and a DC06 steel sheet. The validity of the model is assessed by comparing the predicted and experimental forming limits. The remarkable accuracy of the developed software to predict the forming limits under linear and non-linear strain path is obviously due to the performance of the advanced constitutive equations to describe with great detail the material behavior. The effect of strain-induced anisotropy on formability evolution under strain path changes, as predicted by the microstructural hardening model, is particularly well captured by the model.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼