RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Biodegradation of Feather Waste Keratin by the Keratin-Degrading Strain Bacillus subtilis 8

        ( Zhoufeng He ),( Rong Sun ),( Zizhong Tang ),( Tongliang Bu ),( Qi Wu ),( Chenlei Li ),( Hui Chen ) 한국미생물생명공학회(구 한국산업미생물학회) 2018 Journal of microbiology and biotechnology Vol.28 No.2

        Bacillus subtilis 8 is highly efficient at degrading feather keratin. We observed integrated feather degradation over the course of 48 h in basic culture medium while studying the entire process with scanning electron microscopy. Large amounts of ammonia, sulfite, and L-cysteic acid were detected in the fermented liquid. In addition, four enzymes (gammaglutamyltranspeptidase, peptidase T, serine protease, and cystathionine gamma-synthase) were identified that play an important role in this degradation pathway, all of which were verified with molecular cloning and prokaryotic expression. To the best of our knowledge, this report is the first to demonstrate that cystathionine gamma-synthase secreted by B. subtilis 8 is involved in the decomposition of feather keratin. This study provides new data characterizing the molecular mechanism of feather degradation by bacteria, as well as potential guidance for future industrial utilization of waste keratin.

      • SERS study of surface plasmon resonance induced carrier movement in Au@Cu<sub>2</sub>O core-shell nanoparticles

        Chen, Lei,Zhang, Fan,Deng, Xin-Yu,Xue, Xiangxin,Wang, Li,Sun, Yantao,Feng, Jing-Dong,Zhang, Yongjun,Wang, Yaxin,Jung, Young Mee Elsevier 2018 Spectrochimica acta. Part A, Molecular and biomole Vol.189 No.-

        <P><B>Abstract</B></P> <P>A plasmon induced carrier movement enhanced mechanism of surface-enhanced Raman scattering (SERS) was investigated using a charge-transfer (CT) enhancement mechanism. Here, we designed a strategy to study SERS in Au@Cu<SUB>2</SUB>O nanoshell nanoparticles with different shell thicknesses. Among the plasmonically coupled nanostructures, Au spheres with Cu<SUB>2</SUB>O shells have been of special interest due to their ultrastrong electromagnetic fields and controllable carrier transfer properties, which are useful for SERS. Au@Cu<SUB>2</SUB>O nanoshell nanoparticles (NPs) with shell thicknesses of 48–56nm are synthesized that exhibit high SERS activity. This high activity originates from plasmonic-induced carrier transfer from Au@Cu<SUB>2</SUB>O to 4-mercaptobenzoic acid (MBA). The CT transition from the valence band (VB) of Cu<SUB>2</SUB>O to the second excited π-π* transition of MBA, and is of b<SUB>2</SUB> electronic symmetry, which was enhanced significantly. The Herzberg-Teller selection rules were employed to predict the observed enhanced b<SUB>2</SUB> symmetry modes. The system constructed in this study combines the long-range electromagnetic effect of Au NPs, localized surface plasmon resonance (LSPR) of the Au@Cu<SUB>2</SUB>O nanoshell, and the CT contribution to assist in understanding the SERS mechanism based on LSPR-induced carrier movement in metal/semiconductor nanocomposites.</P> <P><B>Highlights</B></P> <P> <UL> <LI> We designed a shell-dependent Au@Cu<SUB>2</SUB>O nanoshell for SERS study. </LI> <LI> SERS contribution enables us to understand the possible enhancement of hybrid nanostructures. </LI> <LI> LSPR-induced carrier movement in Au@Cu<SUB>2</SUB>O nanocomposites. </LI> </UL> </P> <P><B>Graphical Abstract</B></P> <P>We designed the shell-dependent Au@Cu<SUB>2</SUB>O core-shell nanoparticles (NPs) for SERS study. For the electron-hole pairs in the Cu<SUB>2</SUB>O, the plasmon induced resonant energy transfer from Au to the Cu<SUB>2</SUB>O and the direct electron transfer simultaneously which can be observed from the SERS intensity.</P> <P>[DISPLAY OMISSION]</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼