RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A progressive reduction in autophagic capacity contributes to induction of replicative senescence in Hs68 cells

        Han, Byeal-I,Hwang, Sung-Hee,Lee, Michael Elsevier 2017 The international journal of biochemistry & cell b Vol.92 No.-

        <P><B>Abstract</B></P> <P>Autophagy has been implicated in delayed aging and extended longevity. Here, we aimed to study the possible effects of autophagy during the progression of replicative senescence, which is one of the major features of aging. Human foreskin fibroblasts, Hs68 cells, at an initial passage of 15 were serially cultured for several months until they reached cellular senescence. A decrease in cell proliferation was observed during the progression of senescence. Induction of replicative senescence in aged cells (at passage 40) was confirmed by senescence-associated β-galactosidase (SA-β-gal) activity that represents a sensitive and reliable marker for quantifying senescent cells. We detected a significantly increased percentage (%) of SA-β-gal-positive cells at passage 40 (63%) when compared with the younger SA-β-gal-positive cells at passage 15 (0.5%). Notably, the gradual decrease in basal autophagy coincided with replicative senescence induction. However, despite decreased basal autophagic activity in senescent cells, autophagy inducers could induce autophagy in senescent cells. RT-PCR analysis of 11 autophagy-related genes revealed that the decreased basal autophagy in senescent cells might be due to the downregulation of autophagy-regulatory proteins, but not autophagy machinery components. Moreover, the senescence phenotype was not induced in the cells in which rapamycin was added to the culture to continuously induce autophagy from passage 29 until passage 40. Together, our findings suggest that reduced basal autophagy levels due to downregulation of autophagy-regulatory proteins may be the mechanism underlying replicative senescence in Hs68 cells.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Gradual decrease in basal autophagy coincides with replicative senescence induction. </LI> <LI> Autophagy is inducible by rapamycin in senescent cells. </LI> <LI> Senescent cells show decreased expression of autophagy-related genes. </LI> <LI> Rapamycin-induced autophagy suppresses replicative senescence. </LI> </UL> </P>

      • SCIESCOPUSKCI등재

        Induction of Resistance to BRAF Inhibitor Is Associated with the Inability of Spry2 to Inhibit BRAF-V600E Activity in BRAF Mutant Cells

        ( Jun Ho Ahn ),( Byeal I Han ),( Mi Chael Lee ) 한국응용약물학회 2015 Biomolecules & Therapeutics(구 응용약물학회지) Vol.23 No.4

        The clinical benefits of oncogenic BRAF inhibitor therapies are limited by the emergence of drug resistance. In this study, we investigated the role of a negative regulator of the MAPK pathway, Spry2, in acquired resistance using BRAF inhibitor-resistant derivatives of the BRAF-V600E melanoma (A375P/Mdr). Real-time RT-PCR analysis indicated that the expression of Spry2 was higher in A375P cells harboring the BRAF V600E mutation compared with wild-type BRAF-bearing cells (SK-MEL-2) that are resistant to BRAF inhibitors. This result suggests the ability of BRAF V600E to evade feedback suppression in cell lines with BRAF V600E mutations despite high Spry2 expression. Most interestingly, Spry2 exhibited strongly reduced expression in A375P/Mdr cells with acquired resistance to BRAF inhibitors. Furthermore, the overexpression of Spry2 partially restored sensitivity to the BRAF inhibitor PLX4720 in two BRAF inhibitor-resistant cells, indicating a positive role for Spry2 in the growth inhibition induced by BRAF inhibitors. On the other hand, long-term treatment with PLX4720 induced pERK reactivation following BRAF inhibition in A375P cells, indicating that negative feedback including Spry2 may be bypassed in BRAF mutant melanoma cells. In addition, the siRNA-mediated knockdown of Raf-1 attenuated the rebound activation of ERK stimulated by PLX4720 in A375P cells, strongly suggesting the positive role of Raf-1 kinase in ERK activation in response to BRAF inhibition. Taken together, these data suggest that RAF signaling may be released from negative feedback inhibition through interacting with Spry2, leading to ERK rebound and, consequently, the induction of acquired resistance to BRAF inhibitors.

      • SCIESCOPUSKCI등재

        Induction of Resistance to BRAF Inhibitor Is Associated with the Inability of Spry2 to Inhibit BRAF-V600E Activity in BRAF Mutant Cells

        Ahn, Jun-Ho,Han, Byeal-I,Lee, Michael The Korean Society of Applied Pharmacology 2015 Biomolecules & Therapeutics(구 응용약물학회지) Vol.23 No.4

        The clinical benefits of oncogenic BRAF inhibitor therapies are limited by the emergence of drug resistance. In this study, we investigated the role of a negative regulator of the MAPK pathway, Spry2, in acquired resistance using BRAF inhibitor-resistant derivatives of the BRAF-V600E melanoma (A375P/Mdr). Real-time RT-PCR analysis indicated that the expression of Spry2 was higher in A375P cells harboring the BRAF V600E mutation compared with wild-type BRAF-bearing cells (SK-MEL-2) that are resistant to BRAF inhibitors. This result suggests the ability of BRAF V600E to evade feedback suppression in cell lines with BRAF V600E mutations despite high Spry2 expression. Most interestingly, Spry2 exhibited strongly reduced expression in A375P/Mdr cells with acquired resistance to BRAF inhibitors. Furthermore, the overexpression of Spry2 partially restored sensitivity to the BRAF inhibitor PLX4720 in two BRAF inhibitor-resistant cells, indicating a positive role for Spry2 in the growth inhibition induced by BRAF inhibitors. On the other hand, long-term treatment with PLX4720 induced pERK reactivation following BRAF inhibition in A375P cells, indicating that negative feedback including Spry2 may be bypassed in BRAF mutant melanoma cells. In addition, the siRNA-mediated knockdown of Raf-1 attenuated the rebound activation of ERK stimulated by PLX4720 in A375P cells, strongly suggesting the positive role of Raf-1 kinase in ERK activation in response to BRAF inhibition. Taken together, these data suggest that RAF signaling may be released from negative feedback inhibition through interacting with Spry2, leading to ERK rebound and, consequently, the induction of acquired resistance to BRAF inhibitors.

      • SCISCIESCOPUS

        Knockout of ATG5 leads to malignant cell transformation and resistance to Src family kinase inhibitor PP2 : Cell transformation in ATG5 knockout cells

        Hwang, Sung-Hee,Han, Byeal-I,Lee, Michael Liss 2018 Journal of Cellular Physiology Vol.233 No.1

        <P>Autophagy can either promote or inhibit cell death in different cellular contexts. In this study, we investigated the role of autophagy in ATG5 knockout (KO) cell line established using CRISPR/Cas9 system. In ATG5 KO cells, RT-PCR and immunoblot of LC3 confirmed the functional gene knockout. We found that knockout of ATG5 significantly increased proliferation of NIH 3T3 cells. In particular, autophagy deficiency enhanced susceptibility to cellular transformation as determined by an in vitro clonogenic survival assay and a soft agar colony formation assay. We also found that ATG5 KO cells had a greater migration ability as compared to wild-type (WT) cells. Moreover, ATG5 KO cells were more resistant to treatment with a Src family tyrosine kinase inhibitor (PP2) than WT cells were. Cyto-ID Green autophagy assay revealed that PP2 failed to induce autophagy in ATG5 KO cells. PP2 treatment decreased the percentage of cells in the S and G(2)/M phases among WT cells but had no effect on cell cycle distribution of ATG5 KO cells, which showed a high percentage of cells in the S and G(2)/M phases. Additionally, the proportion of apoptotic cells significantly decreased after treatment of ATG5 KO cells with PP2 in comparison with WT cells. We found that expression levels of p53 were much higher in ATG5 KO cells. The ATG5 KO seems to lead to compensatory upregulation of the p53 protein because of a decreased apoptosis rate. Taken together, our results suggest that autophagy deficiency can lead to malignant cell transformation and resistance to PP2.</P>

      • SCIESCOPUSKCI등재

        Differential Sensitivity of Wild-Type and BRAF-Mutated Cells to Combined BRAF and Autophagy Inhibition

        ( Hojin Yeom ),( Sung-hee Hwang ),( Byeal-i Han ),( Michael Lee ) 한국응용약물학회 2021 Biomolecules & Therapeutics(구 응용약물학회지) Vol.29 No.4

        BRAF inhibitors are insufficient monotherapies for BRAF-mutated cancer; therefore, we investigated which inhibitory pathway would yield the most effective therapeutic approach when targeted in combination with BRAF inhibition. The oncogenic BRAF inhibitor, PLX4720, increased basal autophagic flux in BRAF-mutated cells compared to wild-type (WT) BRAF cells. Interestingly, early autophagy inhibition improved the effectiveness of PLX4720 regardless of BRAF mutation, whereas late autophagy inhibition did not. Although ATG5 knockout led to PLX4720 resistance in both WT and BRAF-mutated cells, the MEK inhibitor trametinib exhibited a synergistic effect on PLX4720 sensitivity in WT BRAF cells but not in BRAF-mutated cells. Conversely, the prolonged inhibition of endoplasmic reticulum (ER) stress reduced basal autophagy in BRAF-mutated cells, thereby increasing PLX4720 sensitivity. Taken together, our results suggest that the combined inhibition of ER stress and BRAF may simultaneously suppress both pro-survival ER stress and autophagy, and may therefore be suitable for treatment of BRAF-mutated tumors whose autophagy is increased by chronic ER stress. Similarly, for WT BRAF tumors, therapies targeting MEK signaling may be a more effective treatment strategy. Together, this study presents a rational combination treatment strategy to improve the efficacy of BRAF inhibitors depending on BRAF mutation status.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼