RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      A polymeric composite protective layer for stable Li metal anodes

      한글로보기

      https://www.riss.kr/link?id=A107340829

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Lithium (Li) metal is a promising anode for high-performance secondary lithium batteries with high energy density due to its highest theoretical specific capacity and lowest electrochemical potential among anode materials. However, the dendritic growt...

      Lithium (Li) metal is a promising anode for high-performance secondary lithium batteries with high energy density due to its highest theoretical specific capacity and lowest electrochemical potential among anode materials. However, the dendritic growth and detrimental reactions with electrolyte during Li plating raise safety concerns and lead to premature failure. Herein, we report that a homogeneous nanocomposite protective layer, prepared by uniformly dispersing ­AlPO 4 nanoparticles into the vinylidene fluoride-co-hexafluoropropylene matrix, can effectively prevent dendrite growth and lead to superior cycling performance due to synergistic influence of homogeneous Li plating and electronic insulation of polymeric layer. The results reveal that the protected Li anode is able to sustain repeated Li plating/stripping for > 750 cycles under a high current density of 3 mA cm −2 and a renders a practical specific capacity of 2 mAh cm −2 . Moreover, full-cell Li-ion battery is constructed by using ­LiFePO 4 and protected Li as a cathode and anode, respectively, rendering a stable capacity after 400 charge/discharge cycles. The current work presents a promising approach to stabilize Li metal anodes for next-generation Li secondary batteries.

      더보기

      참고문헌 (Reference)

      1 X. B. Cheng, "review of solid electrolyte interphases on lithium metal anode" 3 : 1500213-, 2016

      2 M. Ye, "anti-piercing and eliminating-dendrite lithium metal battery" 49 : 403-410, 2018

      3 C. Zhang, "Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries" 8 : 1703404-, 2018

      4 M. Spasova, "Tuning the properties of PVDF or PVDF-HFP fibrous materials decorated with ZnO nanoparticles by applying electrospinning alone or in conjunction with electrospraying" 18 : 649-657, 2017

      5 Q. Pang, "Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries" 3 : 783-791, 2018

      6 T. T. Zuo, "Trapping lithium into hollow silica microspheres with a carbon nanotube core for dendrite-free lithium metal anodes" 18 : 297-301, 2018

      7 X. -B. Cheng, "Toward safe lithium metal anode in rechargeable batteries: a review" 117 : 10403-10473, 2017

      8 B. Wu, "The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries" 11 : 1803-1810, 2018

      9 C. -H. Du, "The effects of quenching on the phase structure of vinylidene fluoride segments in PVDF-HFP copolymer and PVDF-HFP/PMMA blends" 41 : 417-421, 2006

      10 D. J. Lee, "Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode" 28 : 857-863, 2016

      1 X. B. Cheng, "review of solid electrolyte interphases on lithium metal anode" 3 : 1500213-, 2016

      2 M. Ye, "anti-piercing and eliminating-dendrite lithium metal battery" 49 : 403-410, 2018

      3 C. Zhang, "Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries" 8 : 1703404-, 2018

      4 M. Spasova, "Tuning the properties of PVDF or PVDF-HFP fibrous materials decorated with ZnO nanoparticles by applying electrospinning alone or in conjunction with electrospraying" 18 : 649-657, 2017

      5 Q. Pang, "Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries" 3 : 783-791, 2018

      6 T. T. Zuo, "Trapping lithium into hollow silica microspheres with a carbon nanotube core for dendrite-free lithium metal anodes" 18 : 297-301, 2018

      7 X. -B. Cheng, "Toward safe lithium metal anode in rechargeable batteries: a review" 117 : 10403-10473, 2017

      8 B. Wu, "The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries" 11 : 1803-1810, 2018

      9 C. -H. Du, "The effects of quenching on the phase structure of vinylidene fluoride segments in PVDF-HFP copolymer and PVDF-HFP/PMMA blends" 41 : 417-421, 2006

      10 D. J. Lee, "Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode" 28 : 857-863, 2016

      11 J. Cao, "Structure and electrochemical properties of composite polymer electrolyte based on poly vinylidene fluoride-hexafluoropropylene/titania-poly(methyl methacrylate) for lithium-ion batteries" 246 : 499-504, 2014

      12 Y. Lu, "Stable lithium electrodeposition in liquid and nanoporous solid electrolytes" 13 : 961-969, 2014

      13 S. H. Jiao, "Stable cycling of high-voltage lithium metal batteries in ether electrolytes" 3 : 739-746, 2018

      14 L. Ma, "Stable artificial solid electrolyte interphases for lithium batteries" 29 : 4181-4189, 2017

      15 Z. Y. Tu, "Stabilizing lithium electrodeposition using high conductivity/modulus nanoporous hybrid electrolyte for high energy metal-based batteries" 2017

      16 M. D. Tikekar, "Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions" 2 : e1600320-, 2016

      17 X. L. Ji, "Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition" 7 : 10-20, 2012

      18 L. Fan, "Simultaneous suppression of the dendrite formation and shuttle effect in a lithium-Sulfur battery by bilateral solid electrolyte interface" 5 : 1700934-, 2018

      19 D. Zhou, "SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life" 6 : 1502214-, 2016

      20 L. Li, "Self-heating-induced healing of lithium dendrites" 359 : 1513-1516, 2018

      21 P. -Y. Zhai, "Scaled-up fabrication of porous-graphene-modified separators for highcapacity lithium–sulfur batteries" 7 : 56-63, 2017

      22 D. Lin, "Reviving the lithium metal anode for high-energy batteries" 12 : 194-, 2017

      23 H. -K. Jing, "Protected lithium anode with porous Al2O3 layer for lithium–sulfur battery" 3 : 12213-12219, 2015

      24 S. -S. Chi, "Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode" 27 : 1700348-, 2017

      25 J. Lang, "One-pot solution coating of high quality LiF layer to stabilize Li metal anode" 16 : 85-90, 2019

      26 H. P. Wang, "Novel microporous poly(vinylidene fluoride) blend electrolytes for lithium-ion batteries" 147 : 2853-2861, 2000

      27 A. C. Kozen, "Next-generation lithium metal anode engineering via atomic layer deposition" 9 : 5884-5892, 2015

      28 Y. Wu, "New organic complex for lithium layered oxide modification:ultrathin coating, high-voltage, and safety performances" 4 : 656-665, 2019

      29 Z. Tu, "Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries" 48 : 2947-2956, 2015

      30 Z. Y. Tu, "Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries" 4 : 1300654-, 2014

      31 A. Ben-Naim, "Modern thermodynamics" 42 : 857-858, 2017

      32 J.-M. Tarascon, "Materials for Sustainable Energy" 171-179,

      33 Y. Liu, "Making Li-metal electrodes rechargeable by controlling the dendrite growth direction" 2 : 17083-, 2017

      34 L. Wang, "Long lifespan lithium metal anodes enabled by Al2O3 sputter coating" 10 : 16-23, 2018

      35 Y. Liu, "Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode" 7 : 10992-, 2016

      36 F. F. Shi, "Lithium metal stripping beneath the solid electrolyte interphase" 115 : 8529-8534, 2018

      37 L. Chen, "Lithium metal protected by atomic layer deposition metal oxide for high performance anodes" 5 : 12297-12309, 2017

      38 W. Xu, "Lithium metal anodes for rechargeable batteries" 7 : 513-537, 2014

      39 P. C. Shi, "Lithium difluorophosphate as a dendrite-suppressing additive for lithium metal batteries" 10 : 22201-22209, 2018

      40 A. Jana, "Lithium dendrite growth mechanisms in liquid electrolytes" 41 : 552-565, 2017

      41 M. Zier, "Lithium dendrite and solid electrolyte interphase investigation using OsO4" 266 : 198-207, 2014

      42 E. C. Evarts, "Lithium batteries: to the limits of lithium" 526 : S93-, 2015

      43 C. Shen, "Li2O-Reinforced solid electrolyte interphase on three-dimensional sponges for dendrite-free lithium deposition" 6 : 517-, 2018

      44 S. M. Wood, "K + Reduces lithium dendrite growth by forming a thin, less-resistive solid electrolyte interphase" 1 : 414-419, 2016

      45 J. Cao, "Interfacial compatibility of gel polymer electrolyte and electrode on performance of Li-ion battery" 114 : 527-532, 2013

      46 J. Cao, "In situ prepared nano-crystalline TiO2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries" 1 : 5955-5961, 2013

      47 T. Osaka, "Improved morphology of plated lithium in poly(vinylidene fluoride) based electrolyte" 81–82 : 734-738, 1999

      48 X. B. Cheng, "Growth mechanisms and suppression strategies of lithium metal dendrites" 30 : 51-72, 2018

      49 J. S. Lee, "Enzyme-driven Hasselback-like DNA-based inorganic superstructures" 27 : 1704213-, 2017

      50 J. M. Zheng, "Electrolyte additive enabled fast charging and stable cycling lithium metal batteries" 2 : 8-, 2017

      51 S. Y. Wei, "Electrochemical interphases for high-energy storage using reactive metal anodes" 51 : 80-88, 2018

      52 C. Yan, "Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition" 30 : 1707629-, 2018

      53 J. Cao, "Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries" 111 : 674-679, 2013

      54 P. Zou, "Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries" 9 : 464-, 2018

      55 J. Zhang, "Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy" 12 : 2153-2157, 2012

      56 K. J. Harry, "Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes" 13 : 69-73, 2014

      57 M. D. Tikekar, "Design principles for electrolytes and interfaces for stable lithium-metal batteries" 1 : 1-7, 2016

      58 K. N. Wood, "Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy" 2 : 790-801, 2016

      59 Q. Lu, "Dendritefree, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte" 29 : 1604460-, 2017

      60 X. B. Cheng, "Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries" 3 : 7207-7209, 2015

      61 D. Rehnlund, "Dendrite-free lithium electrode cycling via controlled nucleation in low LiPF6 concentration electrolytes" 21 : 1010-1018, 2018

      62 Y. H. Zhang, "Dendrite-free lithium deposition with self-aligned nanorod structure" 14 : 6889-6896, 2014

      63 X. B. Cheng, "Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries" 28 : 2888-2895, 2016

      64 X. Li, "Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives" 8 : 1703022-, 2018

      65 J. Qian, "Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive" 15 : 135-144, 2015

      66 F. Ding, "Dendrite-Free lithium deposition via self-healing electrostatic shield mechanism" 135 : 4450-4456, 2013

      67 S. M. Choi, "Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode" 244 : 363-368, 2013

      68 M. J. Zachman, "Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries" 560 : 345-349, 2018

      69 W. Liu, "Core-shell nanoparticle coating as an interfacial layer for dendrite free lithium metal anodes" 3 : 135-140, 2017

      70 C. P. Yang, "Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework" 115 : 3770-3775, 2018

      71 H. T. T. Le, "Composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP) with modified aluminum-doped lithium lanthanum titanate (A-LLTO) for high-performance lithium rechargeable batteries" 8 : 20710-20719, 2016

      72 J. Cao, "Composite electrospun membranes containing a monodispersed nano-sized TiO2@Li + single ionic conductor for Li-ion batteries" 5 : 8258-8262, 2015

      73 H. Zhao, "Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector" 8 : 1800266-, 2018

      74 Q. Yun, "Chemical dealloying derived 3D porous current collector for Li metal anodes" 28 : 6932-6939, 2016

      75 J. B. Goodenough, "Challenges for rechargeable li batteries" 22 : 587-603, 2010

      76 R. Xu, "Artificial soft-rigid protective layer for dendrite-free lithium metal anode" 28 : 1705838-, 2018

      77 C.Z. Zhao, "An ion redistributor for dendrite-free lithium metal anodes" 4 (4): eaat3446-, 2018

      78 F. Wu, "An effective approach to protect lithium anode and improve cycle performance for Li–S batteries" 6 : 15542-15549, 2014

      79 Y. Liu, "An artificial solid electrolyte interphase with high Li-Ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes" 29 : 1605331-, 2017

      80 C. Z. Zhao, "An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes" 114 : 11069-11074, 2017

      81 C. -P. Yang, "Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes" 6 : 8058-, 2015

      82 W. Zhang, "A “cation-anion regulation”synergistic anode host for dendrite-free lithium metal batteries" 4 (4): eaar4410-, 2018

      83 J. W. Xiang, "A strategy of selective and dendrite-free lithium deposition for lithium batteries" 42 : 262-268, 2017

      84 Y. C. Zhou, "A stable lithium-selenium interface via solid/liquid hybrid electrolytes: blocking polyselenides and suppressing lithium dendrite" 39 : 554-561, 2017

      85 M. Bai, "A scalable approach to dendrite-free lithium anodes via spontaneous reduction of spray-coated graphene oxide layers" 30 : e1801213-, 2018

      86 H. Wang, "A reversible dendrite-free high-areal-capacity lithium metal electrode" 8 : 15106-, 2017

      87 Y. Xia, "A newly designed composite gel polymer electrolyte based on poly(Vinylidene Fluoride-Hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium-sulfur batteries" 23 : 15203-15209, 2017

      88 T. T. Dong, "A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery" 11 : 1197-1203, 2018

      89 X. Liang, "A facile surface chemistry route to a stabilized lithium metal anode" 2 : 17119-, 2017

      90 W. Fan, "A dual-salt Gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries" 5 : 1800559-, 2018

      91 S. Liu, "3D TiC/C core/shell nanowire skeleton for dendrite-Free and long-life lithium metal anode" 8 : 1702322-, 2018

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 선정 (해외등재 학술지 평가) KCI등재
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼