RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      리튬 이온 전지용 리튬 코발트 산화물 양극에서의 삽입 전압과 리튬 이온 전도 = Intercalation Voltage and Lithium Ion Conduction in Lithium Cobalt Oxide Cathode for Lithium Ion Battery

      한글로보기

      https://www.riss.kr/link?id=A101102304

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 연구는 밀도 범함수 이론을 이용하여 Li이온전지에 사용되는 Li코발트 산화물에서의 Li이온 삽입 전압과 전도에 관한 것이다. Li이온은 Li코발트 산화물 원자구조의 각 층을 1개씩 채우거나...

      본 연구는 밀도 범함수 이론을 이용하여 Li이온전지에 사용되는 Li코발트 산화물에서의 Li이온 삽입 전압과 전도에 관한 것이다. Li이온은 Li코발트 산화물 원자구조의 각 층을 1개씩 채우거나 한 층을 다 채우고 다음 층을 채울 수 있다. 평균 삽입 전압은 3.48V로 동일하나, 전자가 후자보다 더 유리하였다. 격자상수 c는 Li농도가 0.25보다 작을 때는 증가하였으나, 0.25보다 클 때는 감소하였다. Li농도가 증가하면, Li코발트 산화물에서의 Li이온 전도를 위한 에너지 장벽은 증가하였다. Li이온전지가 방전 중 출력 전압이 낮아지는 현상은 Li농도 증가에 따른 삽입 전압의 감소와 전도 에너지 장벽의 증가로 설명할 수 있었다.

      더보기

      다국어 초록 (Multilingual Abstract)

      We performed a density functional theory study to investigate the intercalation voltage and lithium ion conduction in lithium cobalt oxide for lithium ion battery as a function of the lithium concentration. There were two methods for the intercalation...

      We performed a density functional theory study to investigate the intercalation voltage and lithium ion conduction in lithium cobalt oxide for lithium ion battery as a function of the lithium concentration. There were two methods for the intercalation of lithium ions; the intercalation of a lithium ion at a time in the individual layer and the intercalation of lithium ions in all the sites of one layer after all the sites of another layer. The average intercalation voltage was the same value, 3.48 V. However, we found the former method was more favorable than the latter method. The lattice parameter c was increased as the increase of the lithium concentration in the range of x < 0.25 while it was decreased as increase of the lithium concentration in the range of x > 0.25. The energy barrier for the conduction of lithium ion in lithium cobalt oxide was increased as the lithium concentration was increased. We demonstrated that the decrease of the intercalation voltage and increase of the energy barrier as the increase of the lithium concentration caused lower output voltage during the discharge of the lithium ion battery.

      더보기

      참고문헌 (Reference)

      1 J. Hafner, "Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research" 31 : 659-, 2006

      2 D. Kramer, "Tailoring the Morphology of LiCoO2: A First Principles Study" 21 : 3799-, 2009

      3 Y. Takahashi, "Structure and Electron Density Analysis of Electrochemically and Chemically Delithiated LiCoO2 Single Crystals" 180 : 313-, 2007

      4 Y. Shao-Horn, "Structural Stability of LiCoO2 at 400oC" 168 : 60-, 2002

      5 T. Ohzuku, "Solid-State Redox Reactions of LiCoO2 (R3m) for 4 Volt Secondary Lithium Cells" 141 : 2972-, 1994

      6 D. Vanderbilt, "Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism" 41 : 7892-, 1990

      7 A. I. Landa, "Phase Stability of Li(Mn100−xCox)O2 Oxides: An Ab Initio Study" 149 : 209-, 2002

      8 D. Sheppard, "Optimization Methods for Finding Minimum Energy Paths" 128 : 134106-, 2008

      9 M. Okubo, "Nanosize Effect on High-Rate Li-ion Intercalation in LiCoO2 Electrode" 129 : 7444-, 2007

      10 A. Van der Ven, "Lithium Diffusion Mechanisms in Layered Intercalstion Compounds" 97-98 : 529-, 2001

      1 J. Hafner, "Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research" 31 : 659-, 2006

      2 D. Kramer, "Tailoring the Morphology of LiCoO2: A First Principles Study" 21 : 3799-, 2009

      3 Y. Takahashi, "Structure and Electron Density Analysis of Electrochemically and Chemically Delithiated LiCoO2 Single Crystals" 180 : 313-, 2007

      4 Y. Shao-Horn, "Structural Stability of LiCoO2 at 400oC" 168 : 60-, 2002

      5 T. Ohzuku, "Solid-State Redox Reactions of LiCoO2 (R3m) for 4 Volt Secondary Lithium Cells" 141 : 2972-, 1994

      6 D. Vanderbilt, "Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism" 41 : 7892-, 1990

      7 A. I. Landa, "Phase Stability of Li(Mn100−xCox)O2 Oxides: An Ab Initio Study" 149 : 209-, 2002

      8 D. Sheppard, "Optimization Methods for Finding Minimum Energy Paths" 128 : 134106-, 2008

      9 M. Okubo, "Nanosize Effect on High-Rate Li-ion Intercalation in LiCoO2 Electrode" 129 : 7444-, 2007

      10 A. Van der Ven, "Lithium Diffusion Mechanisms in Layered Intercalstion Compounds" 97-98 : 529-, 2001

      11 G. Kresse, "From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method" 59 : 1758-, 1999

      12 C. Wolverton, "First-principles Theory of Cation and Intercalation Ordering in LixCoO2" 81-82 : 680-, 1999

      13 K. S. Kang, "Factors that Affect Li Mobility in Layered Lithium Transition Metal Oxides" 74 : 094105-1-, 2006

      14 K. S. Kang, "Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries" 311 : 977-, 2006

      15 G. Kresse, "Efficient Iterative Schemes for Ab Initio Total-energy Calculations using a Planewave Basis Set" 54 : 11169-, 1996

      16 G. Kresse, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors using a Plane-wave BASIS Set" 6 : 15-, 1996

      17 S. Shi, "Effect of Mgdoping on the Structural and Electronic Properties of LiCoO2: A First-principles Investigation" 171 : 908-, 2007

      18 P. Pulay, "Convergence Acceleration in Iterative Sequences: The Case of SCF Iteration" 73 : 393-, 1980

      19 G. Ceder, "Computational Modeling and Simulation for Rechargeable Batteries" 27 : 619-, 2002

      20 Y. Shao-Horn, "Atomic Resolution of Lithium Ions in LiCoO2" 2 : 464-, 2003

      21 "Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium" 49 : 14251-, 1994

      22 G. Kresse, "Ab Initio Molecular Dynamics for Liquid Metals" 47 : 558-, 1993

      23 M. K. Aydinol, "Ab Initio Calculation of the Intercalation Voltage of Lithiumtransition- metal Oxide Electrodes for Rechargeable Batteries" 68 : 664-, 1997

      24 J. Xu, "A Review of Processes and Technologies for the Recycling of Lithium-ion Secondary Batteries" 177 : 512-, 2008

      25 D. M. Wood, "A New Method for Diagonalising Large Matrices" 18 : 1343-, 1985

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.24 0.24 0.28
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.25 0.21 0.514 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼