RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      IGRT를 위한 비침습적인 호흡에 의한 장기 움직임 실시간 추적시스템 = A Non-invasive Real-time Respiratory Organ Motion Tracking System for Image Guided Radio-Therapy

      한글로보기

      https://www.riss.kr/link?id=A101119395

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A non-invasive respiratory gated radiotherapy system like those based on external anatomic motion gives better comfortableness to patients than invasive system on treatment. However, higher correlation between the external and internal anatomic motion...

      A non-invasive respiratory gated radiotherapy system like those based on external anatomic motion gives better comfortableness to patients than invasive system on treatment. However, higher correlation between the external and internal anatomic motion is required to increase the effectiveness of non-invasive respiratory gated radiotherapy. Both of invasive and non-invasive methods need to track the internal anatomy with the higher precision and rapid response. Especially, the non-invasive method has more difficulty to track the target position successively because of using only image processing. So we developed the system to track the motion for a non-invasive respiratory gated system to accurately find the dynamic position of internal structures such as the diaphragm and tumor. The respiratory organ motion tracking apparatus consists of an image capture board, a fluoroscopy system and a processing computer. After the image board grabs the motion of internal anatomy through the fluoroscopy system, the computer acquires the organ motion tracking data by image processing without any additional physical markers. The patients breathe freely without any forced breath control and coaching, when this experiment was performed. The developed pattern-recognition software could extract the target motion signal in real-time from the acquired fluoroscopic images. The range of mean deviations between the real and acquired target positions was measured for some sample structures in an anatomical model phantom. The mean and max deviation between the real and acquired positions were less than 1mm and 2mm respectively with the standardized movement using a moving stage and an anatomical model phantom. Under the real human body, the mean and maximum distance of the peak to trough was measured 23.5mm and 55.1mm respectively for 13 patients' diaphragm motion. The acquired respiration profile showed that human expiration period was longer than the inspiration period. The above results could be applied to respiratory-gated radiotherapy.

      더보기

      참고문헌 (Reference)

      1 A. Dutreix, "When and how can we improve precision in radiotherapy?" 275-292, 1984.

      2 J. W. Wong, "The use of active breathing control(ABC) to reduce margin for breathing motion" 44 (44): 911-919, 1999.

      3 Kenneth E. Rosenzweig, "The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer" 48 : 81-87, 2000.

      4 T. Kanai, "Respiratory gated irradiation system for heavy-ion radiotherapy" 47 : 1097-1103, 2000.

      5 H. D. Kubo, "Respiration gated radiotherapy treatment: A technical study" 41 : 83-91, 1996.

      6 R. K. Ten Haken, "Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors" 38 : 613-617, 1997.

      7 H. Shirato. S. Shimizu, "Physical aspects of real-time tumor-tracking system for gated radiotherapy [in process citation]" 48 (48): 1187-1195, 2000.

      8 K. M. Langen, "Organ motion and its management" 50 : 265-278, 2001.

      9 J. E. Marks, "Localization error in the radiotherapy of Hodgkin's disease and malignant lymphoma with extended mantle fields" 34 : 83-90, 1974.

      10 W. C. Lam, "Digital imaging for radiation therapy verification" 21 : 888-893, 1982.

      1 A. Dutreix, "When and how can we improve precision in radiotherapy?" 275-292, 1984.

      2 J. W. Wong, "The use of active breathing control(ABC) to reduce margin for breathing motion" 44 (44): 911-919, 1999.

      3 Kenneth E. Rosenzweig, "The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer" 48 : 81-87, 2000.

      4 T. Kanai, "Respiratory gated irradiation system for heavy-ion radiotherapy" 47 : 1097-1103, 2000.

      5 H. D. Kubo, "Respiration gated radiotherapy treatment: A technical study" 41 : 83-91, 1996.

      6 R. K. Ten Haken, "Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors" 38 : 613-617, 1997.

      7 H. Shirato. S. Shimizu, "Physical aspects of real-time tumor-tracking system for gated radiotherapy [in process citation]" 48 (48): 1187-1195, 2000.

      8 K. M. Langen, "Organ motion and its management" 50 : 265-278, 2001.

      9 J. E. Marks, "Localization error in the radiotherapy of Hodgkin's disease and malignant lymphoma with extended mantle fields" 34 : 83-90, 1974.

      10 W. C. Lam, "Digital imaging for radiation therapy verification" 21 : 888-893, 1982.

      11 Yoon Jong KIM, "A study on portal image for the automatic verification of radiation therapy" e82-a (e82-a): 945-951, 1999.

      12 K. Mah, "A clinical study on the response to fractionated radiotherapy" 13 : 179-188, 1987.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-10-06 학술지명변경 외국어명 : 미등록 -> Joural of Biomedical Engineering Research KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.08 0.08 0.12
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.11 0.09 0.307 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼