RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      First-principles calculations of the effect of Ge content on the electronic, mechanical and acoustic properties of Li17Si4-xGex

      한글로보기

      https://www.riss.kr/link?id=A106249818

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The electronic, mechanical and acoustic properties of Li17Si4-xGex (x=0, 2.3, 3.08, 3.53, and 4) have been investigated by using first-principles calculations based on the density functional theory (DFT). The research shows that the bulk modulus B, Yo...

      The electronic, mechanical and acoustic properties of Li17Si4-xGex (x=0, 2.3, 3.08, 3.53, and 4) have been investigated by using first-principles calculations based on the density functional theory (DFT). The research shows that the bulk modulus B, Young's modulus E, shear modulus G, and hardness Hv gradually decrease with the increasing Ge content. Li17Si4-xGex have the brittle nature from the analysis of B/G ratio and Cauchy pressure.
      The maximum Young's moduli are all along [1 1 0] plane, and the sequence of degree of anisotropic property is Li17Ge4 > Li17Si0.48Ge3.52 > Li17Si0.92Ge3.08 > Li17Si1.7Ge2.3 > Li17Si4. The analysis of acoustic velocity shows that all the sound velocities decrease with the increasing Ge content for Li17Si4-xGex (x=0, 2.3, 3.08, 3.53, and 4), and the longitudinal wave along [111] direction is fastest for the studied compounds. Debye temperature ΘD, vt and vl decrease with the increasing Ge content. The minimum thermal conductivity decreases with the increasing Ge content, and Li17Si4-xGex have low thermal conductivities and are not potential thermal conductors. The analysis of electronic properties indicates that Li17Si4-xGex have the metal nature and anisotropic electrical conductivity. The electric conduction is improved with the increasing Ge content.

      더보기

      참고문헌 (Reference)

      1 S. F. Pugh, "XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals" 45 : 823-843, 1954

      2 R. A. Sharma, "Thermodynamic properties of the lithium-silicon system" 123 : 1763-1768, 1976

      3 G. R. Goward, "The true crystal structure of Li17M4 (M=Ge, Sn, Pb)–revised from Li22M5" 329 : 82-91, 2001

      4 N.F. Mott, "The Theory of the Properties of Metals and Alloys" Dover Publications 1958

      5 C. K. Chan, "Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes" 189 : 1132-1140, 2009

      6 N. Guechi, "Structural, elastic, electronic and optical properties of the newly synthesized monoclinic Zintl phase BaIn2P2" 29 : 12-23, 2014

      7 M. N. Obrovac, "Structural changes in silicon anodes during lithium insertion/extraction" 7 : A93-A96, 2004

      8 M. Zeilinger, "Structural and thermodynamic similarities of phases in the Li-Tt (Tt=Si, Ge) systems: redetermination of the lithium-rich side of the Li-Ge phase diagram and crystal structures of Li17Si4.0-xGex for x=2.3, 3.1, 3.5, and 4 as well as Li4.1Ge" 43 : 14959-14970, 2014

      9 Z. Michael, "Single crystal growth and thermodynamic stability of Li17Si4" 25 : 1960-1967, 2013

      10 M. Ashuri, "Silicon as potential anode material for Li-ion batteries:where size, geometry and structure matter" 8 : 74-103, 2016

      1 S. F. Pugh, "XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals" 45 : 823-843, 1954

      2 R. A. Sharma, "Thermodynamic properties of the lithium-silicon system" 123 : 1763-1768, 1976

      3 G. R. Goward, "The true crystal structure of Li17M4 (M=Ge, Sn, Pb)–revised from Li22M5" 329 : 82-91, 2001

      4 N.F. Mott, "The Theory of the Properties of Metals and Alloys" Dover Publications 1958

      5 C. K. Chan, "Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes" 189 : 1132-1140, 2009

      6 N. Guechi, "Structural, elastic, electronic and optical properties of the newly synthesized monoclinic Zintl phase BaIn2P2" 29 : 12-23, 2014

      7 M. N. Obrovac, "Structural changes in silicon anodes during lithium insertion/extraction" 7 : A93-A96, 2004

      8 M. Zeilinger, "Structural and thermodynamic similarities of phases in the Li-Tt (Tt=Si, Ge) systems: redetermination of the lithium-rich side of the Li-Ge phase diagram and crystal structures of Li17Si4.0-xGex for x=2.3, 3.1, 3.5, and 4 as well as Li4.1Ge" 43 : 14959-14970, 2014

      9 Z. Michael, "Single crystal growth and thermodynamic stability of Li17Si4" 25 : 1960-1967, 2013

      10 M. Ashuri, "Silicon as potential anode material for Li-ion batteries:where size, geometry and structure matter" 8 : 74-103, 2016

      11 M. N. Obrovac, "Reversible cycling of crystalline silicon powder" 154 : A103-A108, 2007

      12 B. G. Pfrommer, "Relaxation of crystals with the quasi-Newton method" 131 : 233-240, 1997

      13 D. Larcher, "Recent findings and prospects in the fields of pure metals as negative electrodes for Li-ion batteries" 17 : 3759-3772, 2007

      14 W. Tang, "Probing lithium germanide phase evolution and structural change in a germanium-in-carbon nanotube energy storage system" 137 : 2600-2607, 2015

      15 J.H. Westbrook, "Principles, Intermetallic Compounds:Principles Practice, vol. 1" John Wiley Sons 1995

      16 X. S. Liu, "Preparation of Ge nanotube arrays from an ionic liquid for lithium ion battery anodes with improved cycling stability" 51 : 2064-2067, 2015

      17 F.J. Nye, "Physical Properties of Crystals" Oxford University Press 1985

      18 M. A. Rahman, "Nanostructured silicon anodes for high-performance lithium-ion batteries" 26 : 647-678, 2016

      19 J. Graetz, "Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities" 151 : A698-A702, 2004

      20 X. Q. Chen, "Modeling hardness of polycrystalline materials and bulk metallic glasses" 19 : 1275-1281, 2011

      21 W. Lai, "Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions" 248 : 789-808, 2014

      22 W. Lai, "Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions" 245 : 609-623, 2014

      23 D. R. Clarke, "Materials selection guidelines for low thermal conductivity thermal barrier coatings" 163 : 67-74, 2003

      24 A. K. Shukla, "Materials for next-generation lithium batteries" 94 : 314-331, 2008

      25 D. G. Cahill, "Lower limit to the thermal conductivity of disordered crystals" 46 : 6131-6140, 1992

      26 W. J. Zhang, "Lithium insertion/extraction mechanism in alloy anodes for lithiumion batteries" 196 : 13-24, 2011

      27 N. Kambe, "Intercalate ordering in first stage graphite-lithium" 40 : 1-4, 1979

      28 M. Winter, "Insertion electrode materials for rechargeable lithium batteries" 10 : 725-763, 1998

      29 T. Kennedy, "High-performance germanium nanowire-based lithium-ion battery anodes extending over, cycles through in situ formation of a continuous porous network" 14 : 716-723, 2014

      30 J. P. Perdew, "Generalized gradient approximation made simple" 77 : 3865-3868, 1996

      31 W. Pan, "Ge composition dependence of properties of solar cells based on multicrystalline SiGe with microscopic compositional distribution" 96 : 1234-1241, 2004

      32 S. J. Clark, "First principles methods using CASTEP" 220 : 567-570, 2005

      33 "Fire-Propulsion Battery-Road Debris" National Highway Traffic Safety Administration 2014

      34 J. Furthmuller, "Extreme softening of Vanderbilt pseudopotentials : general rules and case studies of first-row and d-electron elements" 61 : 4576-4587, 2000

      35 M. Winter, "Electrochemical lithiation of tin and tin-based intermetallics and composites" 45 : 31-50, 1999

      36 W. R. Zhang, "Effect of Ge composition linear grading in the base on the Early voltage of Si/Si1-x Gex/Si HBTs" 38 : 1842-1844, 1995

      37 J. Xu, "Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing" 53 : 97-110, 2015

      38 H. Wu, "Designing nanostructured Si anodes for high energy lithium ion batteries" 7 : 414-429, 2012

      39 K. S. Pitzer, "Corresponding states for perfect liquids" 7 : 583-590, 1939

      40 "Chevrolet Volt Battery Incident Overview Report" National Highway Traffic Safety Administration 2012

      41 B. A. Boukamp, "All-solid lithium electrodes with mixedconductor matrix" 128 : 725-729, 1981

      42 G.V. Sin’ko, "Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure" 14 : 6989-7005, 2002

      43 O. L. Anderson, "A simplified method for calculating the debye temperature from elastic constants" 24 : 909-917, 1963

      44 T. M. Bandhauer, "A critical review of thermal issues in lithium-ion batteries" 158 : R1-R25, 2011

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2008-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.8 0.18 1.17
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.77 0.297 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼