RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      A comparison study on high-order bounded schemes:Flow of PTT-linear fluid in a lid-driven square cavity

      한글로보기

      https://www.riss.kr/link?id=A104425723

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this computational study, the convergence, stability and order of accuracy of several different numerical schemes are assessed and compared. All of the schemes considered were developed using a normalized variable diagram. Two test cases are consid...

      In this computational study, the convergence, stability and order of accuracy of several different numerical schemes are assessed and compared. All of the schemes considered were developed using a normalized variable diagram. Two test cases are considered: (1) two-dimensional steady incompressible laminar flow of a Newtonian fluid in a square lid-driven cavity; and (2) creeping flow of a PTT-linear fluid in a lid-driven square cavity. The governing equations are discretized to varying degrees of refinement using uniform grids, and solved by using the finite volume technique. The momentum interpolation method (MIM) is employed to evaluate the face velocity. Coupled mass and momentum conservation equations are solved through an iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm. Among the higher-order and bounded schemes considered in the present study, only the CLAM, COPLA, CUBISTA, NOTABLE, SMART and WACEB schemes provide a steady converged solution to the prescribed tolerance of 110-5 at all studied Weissenberg (We) numbers, using a very fine mesh structure. It is found that the CLAM, COPLA, CUBISTA, SMART and WACEB schemes provide about the same order of accuracy that is slightly higher than that of the NOTABLE scheme at low and high Weissenberg numbers. Moreover, flow structures formed in the cavity, i.e. primary vortex, are captured accurately up to We = 5 by all converged schemes.

      더보기

      참고문헌 (Reference)

      1 Wei, J. J., "new general convective boundness criterion" 49 : 585-598, 2006

      2 Leonard, B. P., "Why you should not use ‘Hybrid’, ‘Power- Law’ or related exponential schemes for convective modeling: there are much better alternatives" 20 : 421-442, 1995

      3 Warming, R. F., "Upwind second-order difference schemes and applications in aerodynamic flows" 14 : 1241-1249, 1976

      4 Van Leer, B., "Towards the ultimate conservation difference scheme. V. A second-order sequel to Godunov’s Method" 32 : 101-136, 1979

      5 Van Leer, B., "Towards the ultimate conservation difference scheme. II. Monotonicity and conservation combined in second- order scheme" 14 : 361-370, 1974

      6 Marchi, C. H., "The lid-driven square cavity flow: Numerical solution with a 1024x1024 grid" 31 : 186-198, 2009

      7 Leonard, B. P., "The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection" 88 : 17-74, 1991

      8 Leonard, B. P., "Simple high-accuracy resolution program for convective modeling of discontinuities" 8 : 1291-1318, 1988

      9 Roache, P. J., "Quantification of uncertainty in computational fluid dynamics" 29 : 123-160, 1997

      10 Ng, K. C., "Parametric study of an improved GAMMA differencing scheme based on normalized variable formulation for low-speed flow with artificial compressibility technique" 50 : 561-584, 2006

      1 Wei, J. J., "new general convective boundness criterion" 49 : 585-598, 2006

      2 Leonard, B. P., "Why you should not use ‘Hybrid’, ‘Power- Law’ or related exponential schemes for convective modeling: there are much better alternatives" 20 : 421-442, 1995

      3 Warming, R. F., "Upwind second-order difference schemes and applications in aerodynamic flows" 14 : 1241-1249, 1976

      4 Van Leer, B., "Towards the ultimate conservation difference scheme. V. A second-order sequel to Godunov’s Method" 32 : 101-136, 1979

      5 Van Leer, B., "Towards the ultimate conservation difference scheme. II. Monotonicity and conservation combined in second- order scheme" 14 : 361-370, 1974

      6 Marchi, C. H., "The lid-driven square cavity flow: Numerical solution with a 1024x1024 grid" 31 : 186-198, 2009

      7 Leonard, B. P., "The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection" 88 : 17-74, 1991

      8 Leonard, B. P., "Simple high-accuracy resolution program for convective modeling of discontinuities" 8 : 1291-1318, 1988

      9 Roache, P. J., "Quantification of uncertainty in computational fluid dynamics" 29 : 123-160, 1997

      10 Ng, K. C., "Parametric study of an improved GAMMA differencing scheme based on normalized variable formulation for low-speed flow with artificial compressibility technique" 50 : 561-584, 2006

      11 Song, B., "On a higher-order bounded discretization scheme" 32 : 881-897, 2000

      12 Patankar, S. V., "Numerical Heat Transfer and Fluid Flow" McGraw-Hill 1980

      13 Zijlema, M., "Higher-order flux-limiting schemes for the finite volume computation of incompressible flow" 9 : 89-109, 1998

      14 Ng, K. C., "Higher-order bounded differencing schemes for compressible and incompressible flows" 53 : 57-80, 2007

      15 Chakravarthy, S. R., "High-resolution of the OSHER upwind scheme for the Euler equations" 21 : 1241-1248, 1983

      16 Sweby, P. K., "High resolution schemes using flux limiters for hyperbolic conservation laws" 21 : 995-1011, 1984

      17 Harten, A., "High resolution schemes for hyperbolic conservation laws" 49 : 357-393, 1983

      18 Jasak, H., "High resolution NVD differencing scheme for arbitrarily unstructured meshes" 31 : 431-449, 1999

      19 Erturk, E., "Fourth order compact formulation of Navier-Stokes equations and driven cavity flow at high Reynolds numbers" 50 : 421-436, 2006

      20 Yapici, K., "Finite volume simulation of viscoelastic laminar flow in a lid-driven cavity" 164 : 51-65, 2009

      21 Alves, M. A., "Effect of a high-resolution differencing scheme on finite-volume predictions of viscoelastic flows" 93 : 287-314, 2000

      22 Schreiber, R., "Driven cavity flows by efficient numerical techniques" 49 : 310-333, 1983

      23 Erturk, E., "Discussion on driven cavity flow" 60 : 275-294, 2009

      24 Gaskell, P. H., "Curvature-compensated convective tansport: SMART, a new boundedness preserving transport algorithm" 8 : 617-641, 1988

      25 Nacer, B., "Contribution to the improvement of the QUICK scheme for the resolution of the convection-diffusion problems" 43 : 1075-1085, 2007

      26 Przulj, V., "Bounded convection schemes for unstructured grids" 2001

      27 Botella, O., "Benchmark spectral results on the lid-driven cavity flow" 27 (27): 421-433, 1998

      28 Cruz, D. O. A., "Analytical solution for fully developed laminar flow of some viscoelastic liquids with a Newtonian solvent contribution" 132 : 28-35, 2005

      29 Versteeg, H. K., "An introduction to computational fluid dynamics: The finite volume method" Prentice Hall 1995

      30 Pascau, A., "A well-behaved scheme to model strong convection in general transport equation" 5 : 75-87, 1995

      31 Leonard, B. P., "A stable and accurate convective modeling procedure based on quadratic interpolation" 19 : 59-98, 1979

      32 Darwish, M. S., "A new high-resolution scheme based on the normalized variable formulation" 24 : 353-373, 1993

      33 Wei, J. J., "A new high-order-accurate and bounded scheme for incompressible flow" 43 : 19-41, 2003

      34 Phan-Thien, N., "A new constitutive equation derived from network theory" 2 : 353-365, 1977

      35 Zhu, J., "A low dispersion and bounded convection scheme" 92 : 225-232, 1991

      36 Choi, S. K., "A high resolution and bounded convection scheme" 9 : 240-250, 1995

      37 Khosla, P. K., "A diagonally dominant second order accurate implicit scheme" 2 : 207-209, 1974

      38 Alves, M. A., "A convergent and universally bounded interpolation scheme for the treatment of advection" 4 : 47-75, 2003

      39 Hayase, T., "A consistently formulated quick scheme for fast and stable convergence using finite-volume iterative calculation procedures" 98 : 108-118, 1992

      40 Coelho, P. J., "A comparison of spatial discretization schemes for differential solution methods of the radiative transfer equation" 109 : 189-200, 2008

      41 Patankar, S. V., "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows" 15 : 1787-1806, 1972

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-01-01 평가 SCIE 등재 (등재유지) KCI등재
      2012-01-01 평가 SCOPUS 등재 (등재유지) KCI등재
      2011-01-01 평가 등재후보학술지 유지 (등재후보2차) KCI등재후보
      2010-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 SCIE 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.01 0.18 0.77
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.59 0.52 0.327 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼