RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      H<sub>2</sub>/Air 비예혼합화염의 화염신장율에 따른 NO 생성경로의 상세해석 = Detailed Analysis of NO Formation Routes with Strain Rate in H<sub>2</sub>/Air Nonpremixed Flames

      한글로보기

      https://www.riss.kr/link?id=A104929194

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Detailed analysis of NO formation routes and its contributions with strain rate in hydrogen/air flames were numerically investigated. LiG detailed reaction mechanism has been used for calculation, which is compared with experimental data in literature...

      Detailed analysis of NO formation routes and its contributions with strain rate in hydrogen/air flames were numerically investigated. LiG detailed reaction mechanism has been used for calculation, which is compared with experimental data in literature. It shows good agreement with experiment for both temperature and NO mole fraction. Three routes have been found important for NO formation in hydrogen flames. These are the Thermal route, NNH route and $N_2O$ route. Strain rate were varied to discuss the $EI_{NO}$ reduction trend in hydrogen nonpremixed flames, which are analyzed by each NO formation routes. As a result, as the strain rate increase, $EI_{NO}$ decrease sharply until strain rate $100s^{-1}$ and decrease slowly until strain rate $310s^{-1}$ again, after that $EI_{NO}$ keeps nearly constant. It can be identified that $EI_{NO}$ trend with the strain rate is well explained by a combination of variation of production rate of above Thermal, NNH and $N_2O$ route. Also result of Thermal-Mech. that includes only thermal NO reaction is compared with those of Full-Mech. As a result, It can be identified that there was difference between the two results of calculation. It is attributed to result that Thermal-mech did not consider contributions of NNH and $N_2O$ route. From these result, we can conclude that NOx emission characteristics of hydrogen nonpremixed flames should consider contributions of above three routes simultaneously.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼