RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Competition in electricity generation in Germany and neighboring countries from a system dynamics perspective : outlook until 2012

      한글로보기

      https://www.riss.kr/link?id=M9657227

      • 저자
      • 발행사항

        Frankfurt am Main; New York: Peter Lang, c1999

      • 발행연도

        1999

      • 작성언어

        영어

      • 주제어
      • DDC

        333.793/2/0943 판사항(21)

      • ISBN

        0820443395
        3631349106

      • 자료형태

        단행본(다권본)

      • 서명/저자사항

        Competition in electricity generation in Germany and neighboring countries from a system dynamics perspective: outlook until 2012 / Christoph Grobbel

      • 형태사항

        xviii, 245 p.: ill.; 21 cm.

      • 총서사항

        European university studies. Series V, Economics and management, 0531-7339; v. 2460= Europ¨aische Hochschulschriften. Reihe V, Volks- und Betriebswirtschaft; Bd. 2460= Publications universitaires europ´eennes. S´erie V, Sciences ´economiques, gestion d'entreprise; v. 2460 Europ¨aische Hochschulschriften. Reihe V, Volks- und Betriebswirtschaft; Bd. 2460. European university studies. Series V, Economics and management(P. Lang) Europ¨aische Hochschulschriften. Reihe V, Volks- und Betriebswirtschaft(P. Lang) Publications universitaires europ´eennes. S´erie V, Sciences ´economiques, gestion d'entreprise(P. Lang); v. 2460; Bd. 2460; v. 2460

      • 일반주기명

        Originally presented as the author's thesis (doctoral)--Universit¨at Oldenburg, 1999.
        Includes bibliographical references (p. 235-237).

      • 소장기관
        • 국립중앙도서관 국립중앙도서관 우편복사 서비스
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      목차 (Table of Contents)

      • CONTENTS
      • 1 Summary = 1
      • 1.1 Introduction = 1
      • 1.2 Aim of the Dissertation = 2
      • 1.3 Why System Dynamics? = 3
      • CONTENTS
      • 1 Summary = 1
      • 1.1 Introduction = 1
      • 1.2 Aim of the Dissertation = 2
      • 1.3 Why System Dynamics? = 3
      • 1.4 Model Overview = 5
      • 1.4.1 Conceptual View of the Model = 8
      • 1.4.1.1 Structure:Power Pool = 8
      • 1.4.1.2 Structure:Market Demand = 9
      • 1.4.1.3 Structure:Regional Electricity Exchange = 10
      • 1.4.1.4 Structure:Transmission Capacities = 10
      • 1.4.1.5 Structure:Physical Power-plant Capacities = 11
      • 1.4.1.6 Structure:Plant Groups Cost Structure = 11
      • 1.4.1.7 Conduct:Bidding Price = 12
      • 1.4.1.8 Conduct:Hydro Allocation = 12
      • 1.4.1.9 Conduct:Capacity Invest = 13
      • 1.4.1.10 Conduct:Capacity Mothballing = 14
      • 1.4.1.11 Conduct:Capacity Restart = 14
      • 1.4.1.12 Performance:Profit and Business Value = 14
      • 1.4.1.13 Performance:Cash Flow = 15
      • 1.4.1.14 Performance:Income Statement = 15
      • 1.4.1.15 Performance:Electricity Production and Exchange = 15
      • 1.4.1.16 Performance:System Free Capacity = 15
      • 1.4.2 Relations Between Main Variables = 15
      • 1.5 Model Validation = 18
      • 1.6 Examples for Model Functioning = 19
      • 1.6.1 Electricity Prices = 19
      • 1.6.2 Electricity Exchange = 20
      • 1.6.3 Allocation of Available Supply of Hydro = 22
      • 1.7 Summary of Main Findings = 23
      • 1.7.1 Summary of Power-Plant Cost Structure Findings = 23
      • 1.7.2 Main Findings from the Reference Case Simulation = 27
      • 1.7.2.1 Electricity Prices = 27
      • 1.7.2.2 Electricity Exchange = 28
      • 1.7.2.3 Capacity = 28
      • 1.7.3 Effect of Other Fuel Prices, Especially Gas = 29
      • 1.7.4 Effect of Lower Discount Rate = 30
      • 1.7.5 Transmission Cost Variation = 31
      • 1.8 Further Model Applications = 31
      • 2 Detailed Model Description = 33
      • 2.1 GENERAL = 33
      • 2.1.1 Brief Introduction to System Dynamics Modeling = 33
      • 2.1.2 Stock Variables and Exponential Delays = 36
      • 2.2 Detailed Model Explanation = 37
      • 2.2.1 Structure:Power Pool = 38
      • 2.2.2 Structure:Market Demand = 40
      • 2.2.3 Structure:Regional Electricity Exchange = 43
      • 2.2.4 Structure:Transmission Capacities = 43
      • 2.2.5 Structure:Physical Power-plant Capacities = 44
      • 2.2.6 Structure:Plant Groups Cost Structure = 46
      • 2.2.7 Conduct:Bidding Price = 47
      • 2.2.8 Conduct:Hydro Allocation = 50
      • 2.2.9 Conduct:Capacity Invest = 51
      • 2.2.10 Conduct:Capacity Mothballing = 52
      • 2.2.11 Conduct:Capacity Restart = 53
      • 2.2.12 Performance:Profit and Business Value = 53
      • 3 Data Input for Model = 54
      • 3.1 Overview of data Usage in the Model = 54
      • 3.2 Detailed Cost Structure of Power-plants including Fuel Prices = 54
      • 3.2.1 Fuel Costs Per Electricity Unit = 56
      • 3.2.1.1 Costs of Fuel Purchases = 56
      • 3.2.1.1.1 Nuclear Fuel = 56
      • 3.2.1.1.2 Hard Coal = 56
      • 3.2.1.1.3 Lignite = 57
      • 3.2.1.1.4 Gas = 58
      • 3.2.1.1.5 Oil = 60
      • 3.2.1.1.6 Hydro = 63
      • 3.2.1.2 Relationship Between Nominal And Real Efficiencies = 63
      • 3.2.1.3 Efficiencies of Existing Nuclear Power-plants = 64
      • 3.2.1.4 Efficiencies of Existing Coal Power-plants = 65
      • 3.2.1.5 Efficiencies of Existing CCGT Power-plants = 69
      • 3.2.1.6 Efficiencies of Existing Conventional Gas or Oil Power-plants = 70
      • 3.2.1.7 Efficiencies of Existing GT Power-plants = 72
      • 3.2.1.8 Efficiencies of Existing Hydro Power-plants = 74
      • 3.2.1.9 Efficiencies of Newly to be Commissioned Plants = 75
      • 3.2.2 Labor Costs = 75
      • 3.2.2.1 Wages = 75
      • 3.2.2.2 Employees in Nuclear Power-plants = 76
      • 3.2.2.3 Employees in Coal Power-plants = 77
      • 3.2.2.4 Employees in Conventional Oil-and Gas-Fired Power-plants = 79
      • 3.2.2.5 Employees in CCGT Power-plants = 80
      • 3.2.2.6 Employees in GT Power-plants = 81
      • 3.2.2.7 Employees in Hydro Plants = 83
      • 3.2.2.8 Labor Productivity Improvement Potential = 84
      • 3.2.2.9 Future Workforce Levels of Newly Commissioned Plants = 87
      • 3.2.3 Purchase of Material and Labor = 87
      • 3.2.4 Capital Costs = 88
      • 3.2.5 Specific Data Used by the Model = 90
      • 3.3 Transmission Capacities, Distances, Regional Demand = 90
      • 3.4 District Heating = 94
      • 3.4.1 Importance of District Heating for Electricity Generation Costs = 95
      • 3.4.2 Consideration of District Heating = 97
      • 3.5 Political Restrictions = 99
      • 4 Scenario Analysis = 100
      • 4.1 Limitations of the Model = 100
      • 4.1.1 Forecasting or Not? = 100
      • 4.1.2 Conceptual Limitations = 101
      • 4.1.3 Limitations due to Abstraction Level = 101
      • 4.1.4 Overcoming the Limitations due to Abstraction Level in the Future = 103
      • 4.2 Overview of Scenarios = 104
      • 4.3 Base Scenario = 105
      • 4.3.1 Fuel Prices and Transmission Costs in Base Scenario = 105
      • 4.3.2 Outcome Base Scenario = 106
      • 4.3.2.1 Overview Price Evolution = 106
      • 4.3.2.2 Transmission Capacity Utilization = 117
      • 4.3.2.3 Electricity Exchange = 119
      • 4.3.2.4 Overview of Capacity Evolution = 130
      • 4.3.2.5 Regional/Company Performance Comparison = 133
      • 4.3.2.6 Capacity and Prices By Region = 136
      • 4.3.2.6.1 RWE Region = 137
      • 4.3.2.6.2 PreussenElektra Region = 142
      • 4.3.2.6.3 Bayernwerk = 146
      • 4.3.2.6.4 VEAG Region = 149
      • 4.3.2.6.5 EnBW = 153
      • 4.3.2.6.6 VEW Region = 157
      • 4.3.2.6.7 HEW Region = 161
      • 4.3.2.6.8 Bewag Region = 164
      • 4.3.2.6.9 The Netherlands = 168
      • 4.3.2.6.10 Belgium = 172
      • 4.3.2.6.11 France = 175
      • 4.3.2.6.12 Switzerland = 178
      • 4.3.2.6.13 Austria = 183
      • 4.3.2.6.14 Poland & Czech Republic = 185
      • 4.3.2.6.15 Scandinavia = 188
      • 4.3.2.6.16 Denmark = 194
      • 4.3.2.6.17 Italy = 196
      • 4.4 Fuel Price Variation Scenarios = 198
      • 4.4.1 Outcome of Capacity Development = 200
      • 4.4.2 Country Overview of Electricity Prices and Company Value In Three Fuel Cost Scenarios = 204
      • 4.4.2.1 RWE Region = 205
      • 4.4.2.2 PE Region = 206
      • 4.4.2.3 Bayernwerk Region = 206
      • 4.4.2.4 VEAG Region = 207
      • 4.4.2.5 EnBW Region = 208
      • 4.4.2.6 VEW Region = 208
      • 4.4.2.7 HEW Region = 209
      • 4.4.2.8 Bewag Region = 210
      • 4.4.2.9 Netherlands = 211
      • 4.4.2.10 Belgium = 212
      • 4.4.2.11 France = 213
      • 4.4.2.12 Switzerland = 214
      • 4.4.2.13 Austria = 215
      • 4.4.2.14 Poland and Czech Republic = 216
      • 4.4.2.15 Scandinavia = 217
      • 4.4.2.16 Denmark = 218
      • 4.4.2.17 Italy = 219
      • 4.5 Effect of Different Discount Rates = 220
      • 4.6 Effect of Nuclear Phase-Out in Scandinavia = 224
      • 4.6.1 Effect on Scandinavia of Nuclear Phase-Out = 224
      • 4.6.2 Effect of Nuclear Phase-Out in Scandinavia on Other Regions in the Model = 227
      • 4.7 Transmission Cost Variation Scenarios = 228
      • 4.7.1 Transmission Costs in Different Scenarios = 228
      • 4.7.2 Outcome of Transmission Price Variation Scenarios = 231
      • 4.7.2.1 Electricity Price and Capacity = 231
      • 4.7.3 Electricity Exchange = 232
      • 4.8 Productivity Improvement Scenario = 232
      • 4.8.1.1 Electricity Price and Capacity = 233
      • 5 References = 235
      • 6 Appendix = 238
      • 6.1 Existing Parts of Model = 238
      • 6.2 ABBREVIATIONS = 239
      • 6.3 Economic Profit$$a^TM$$ = 239
      • 6.4 Power-plant Cost Structure Additional Information = 240
      • 6.4.1 Effect of Utilization Rate On Efficiencies = 240
      • 6.4.2 Efficiencies of Existing Nuclear Power-plants = 241
      • 6.4.3 Efficiencies of Existing Conventional Gas or Oil Power-plants = 241
      • 6.4.4 Efficiencies of Existing GT Power-plants = 242
      • 6.4.5 Efficiencies of Newly to be Commissioned Plants = 242
      • 6.4.6 Employees in Nuclear Power-plants = 243
      • 6.4.7 Employees in Coal Power-plants = 243
      • 6.4.8 Employees in Conventional Oil-and Gas-Fired Power-plants = 244
      • 6.4.9 Employees in CCGT Power-plants = 245
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼