RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      고비표면적 지르코니움 산화물의 제조 및 특성 분석: pH 영향 = Synthesis and Characterization of High Surface Area of Zirconia: Effect of pH

      한글로보기

      https://www.riss.kr/link?id=A106069415

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      침전법으로 환류방법 또는 수열합성법을 이용하여 산·염기점을 갖는 고비표면적 지르코니아를 합성하였다. 제조된 지르코니아는 침전제로 수산화암모늄 수용액을 사용하여 Zr 용액의 pH�...

      침전법으로 환류방법 또는 수열합성법을 이용하여 산·염기점을 갖는 고비표면적 지르코니아를 합성하였다. 제조된 지르코니아는 침전제로 수산화암모늄 수용액을 사용하여 Zr 용액의 pH를 2에서 10 범위 내에서 조절하였으며 질소흡착분석, X-선 회절분석(XRD), 이소프로판올 승온탈착법(IPA-TPD), 주사전자현미경 분석, X-선 광전자분광분석, 산-염기점 분석을 통해 IPA 분해반응의 촉매활성과 연관하여 특성분석을 수행하였다. 환류방법을 사용할 시, tetragonal 상이 높은 지르코니아를 얻기 위해서는 Zr 용액의 pH가 높아야 하며, pH 9 이상에서는 순수한 tetragonal 상의 지르코니아 합성이 가능하였다. 또한, 비표면적이 큰 지르코니아를 얻기 위해서는 높은 pH가 요구되었으며, pH 10에서 합성한 경우에는 600 ℃에서 소성 후에도 260 ㎡ g<sup>-1</sup>의 높은 비표면적이 얻어졌다. 하지만 같은 조건 하에서 고압이 수반되는 수열합성에는 40 ㎡ g<sup>-1</sup> 이하의 매우 낮은 비표면적을 보였으며, monoclinic 상의 지르코니아가 합성되었다. 고 비표면적 tetragonal 상의 지르코니아를 얻기 위해서는 용액의 pH가 가장 큰 영향을 미쳤으며, 용액의 pH와 무관하게 높은 압력이 필요한 수열합성에서는 monoclinic 지르코니아가 생성되었으며 상대적으로 비표면적이 낮게 나타났다. 높은 비표면적과 tetragonal 상을 갖는 지르코니아는 염기점에 비해 산점이 우세하여 IPA 분해반응에서 선택적 탈수반응만 진행되는 프로필렌만 생성되었다.

      더보기

      다국어 초록 (Multilingual Abstract)

      High specific surface area zirconia with acid-basic property was synthesized by precipitation using reflux method or hydrothermal synthesis method using ammonium hydroxide solution as precipitant in the range of pH of Zr solution from 2 to 10. The pre...

      High specific surface area zirconia with acid-basic property was synthesized by precipitation using reflux method or hydrothermal synthesis method using ammonium hydroxide solution as precipitant in the range of pH of Zr solution from 2 to 10. The prepared zirconia was characterized by the nitrogen adsorption, X-ray diffraction (XRD), isopropanol temperature programmed desorption (IPA-TPD), scanning electron microscopy and X-ray photoelectron spectroscopy, and the catalytic activity in the IPA decomposition reaction was correlated with the acid-basic properties. When using reflux method, high pH of Zr solution was required to obtain high fraction of tetragonal zirconia, and pure tetragonal zirconia was possible at pH 9 or higher. High pH was required to obtain high specific surface area zirconia, and the hydrous zirconia synthesized at pH 10 had high specific surface area zirconia of 260 m<sup>2</sup> g<sup>-1</sup> even after calcination at 600 °C. However, hydrothermal synthesis with high pressure under the same conditions resulted in very low specific surface area below 40 m<sup>2</sup> g<sup>-1</sup> and monoclinic phase zirconia was synthesized. High pH of the solution was required to obtain high specific surface area tetragonal phase zirconia. In hydrothermal synthesis requiring high pressure, monoclinic zirconia was produced irrespective of the pH of the solution, and the specific surface area was relatively low. Zirconia with high specific surface area and tetragonal phase was predominantly acidic compared to basicity and only propylene, which was observed as selective dehydration reaction in IPA decomposition reaction, was produced.

      더보기

      참고문헌 (Reference)

      1 심혜인, "이소프로판올의 탈수반응에서 지르코니아 촉매의 결정상에 따른 영향" 한국화학공학회 51 (51): 208-213, 2013

      2 Stöcker, C., "Zirconia Aerogels : Effect of Acid-to-Alkoxide Ratio, Alcoholic Solvent and Supercritical Drying Method on Structural Properties" 223 : 165-178, 1998

      3 Chuah, G., "The Preparation of High-Surface-Area Zirconia : II. Influence of Precipitating Agent and Digestion on the Morphology and Microstructure of Hydrous Zirconia" 175 : 80-92, 1998

      4 Chuah, G., "The Preparation of High Surface Area Zirconia—Influence of Precipitating Agent and Digestion" 163 : 261-273, 1997

      5 Jung, K. T., "The Effects of Synthesis and Pretreatment Conditions on the Bulk Structure and Surface Properties of Zirconia" 163 : 27-42, 2000

      6 Ma, H., "Synthesis of Ordered Hexagonal Porous Tin-Doped Zirconium Oxides with a High Surface Area" 7 : 241-243, 2005

      7 Aramendı́a, M. A., "Synthesis and Characterization of ZrO2 as Acid-Basic Catalysts : Reactivity of 2-Methyl-3-Butyn-2-Ol" 183 : 240-250, 1999

      8 Duwez, P., "Stabilization of Zirconia with Calcia and Magnesia" 35 : 107-113, 1952

      9 del Monte, F., "Stabilization of Tetragonal ZrO2 in ZrO2-SiO2 Binary Oxides" 83 : 628-634, 2000

      10 Asadikiya, M., "Oxygen Ion Mobility and Conductivity Prediction in Cubic Yttria-Stabilized Zirconia Single Crystals" 53 : 1699-1709, 2018

      1 심혜인, "이소프로판올의 탈수반응에서 지르코니아 촉매의 결정상에 따른 영향" 한국화학공학회 51 (51): 208-213, 2013

      2 Stöcker, C., "Zirconia Aerogels : Effect of Acid-to-Alkoxide Ratio, Alcoholic Solvent and Supercritical Drying Method on Structural Properties" 223 : 165-178, 1998

      3 Chuah, G., "The Preparation of High-Surface-Area Zirconia : II. Influence of Precipitating Agent and Digestion on the Morphology and Microstructure of Hydrous Zirconia" 175 : 80-92, 1998

      4 Chuah, G., "The Preparation of High Surface Area Zirconia—Influence of Precipitating Agent and Digestion" 163 : 261-273, 1997

      5 Jung, K. T., "The Effects of Synthesis and Pretreatment Conditions on the Bulk Structure and Surface Properties of Zirconia" 163 : 27-42, 2000

      6 Ma, H., "Synthesis of Ordered Hexagonal Porous Tin-Doped Zirconium Oxides with a High Surface Area" 7 : 241-243, 2005

      7 Aramendı́a, M. A., "Synthesis and Characterization of ZrO2 as Acid-Basic Catalysts : Reactivity of 2-Methyl-3-Butyn-2-Ol" 183 : 240-250, 1999

      8 Duwez, P., "Stabilization of Zirconia with Calcia and Magnesia" 35 : 107-113, 1952

      9 del Monte, F., "Stabilization of Tetragonal ZrO2 in ZrO2-SiO2 Binary Oxides" 83 : 628-634, 2000

      10 Asadikiya, M., "Oxygen Ion Mobility and Conductivity Prediction in Cubic Yttria-Stabilized Zirconia Single Crystals" 53 : 1699-1709, 2018

      11 Yue, Y., "Nanosized Titania and Zirconia as Catalysts for Hydrolysis of Carbon Disulfide" 46 : 561-572, 2003

      12 Kouva, S., "Monoclinic Zirconia, Its Surface Sites and Their Interaction with Carbon Monoxide" 5 : 3473-3490, 2015

      13 Guisnet, M. R., "Model Reactions for Characterizing the Acidity of Solid Catalysts" 23 : 392-398, 1990

      14 Guerrero, S., "Methane Oxidation on Pd Supported on High Area Zirconia Catalysts" 298 : 243-253, 2006

      15 Pecchi, G., "Methane Combustion on Rh/ZrO2 Catalysts" 17 : L7-L13, 1998

      16 Stichert, W., "Influence of Crystallite Size on the Properties of Zirconia" 10 : 2020-2026, 1998

      17 Park, J. -H., "Hydrothermal Stability of Pd/ZrO2 Catalysts for High Temperature Methane Combustion" 160 : 135-143, 2014

      18 Kim, T. W., "Hydrogenation of the LOHC Compound Monobenzyl Toluene over ZrO2-Supported Ru Nanoparticles : A Consequence of Zirconium Hydroxide’s Surface Hydroxyl Group and Surface Area" 10 : 3406-3410, 2018

      19 Ren, T. -Z., "Hierarchical Microtubular Nanoporous Zirconia with an Extremely High Surface Area and Pore Volume" 388 : 46-49, 2004

      20 Li, Y., "Effects of Redox Properties and Acid-Base Properties on Isosynthesis over ZrO2-Based Catalysts" 221 : 584-593, 2004

      21 Liu, A., "Effects of Composition and Calcination Temperature on Morphology and Structure of Barium Modified Zirconia Nanoparticles" 366 : 66-73, 2004

      22 홍은표, "Effect of aging temperature during refluxing on the textural and surface acidic properties of zirconia catalysts" 한국공업화학회 54 : 137-145, 2017

      23 Li, P., "Effect of Dopants on Zirconia Stabilization—an X-Ray Absorption Study: I, Trivalent Dopants" 77 : 118-128, 1994

      24 Li, P., "Effect of Dopants on Zirconia Stabilization—an X-Ray Absorption Study : II, Tetravalent Dopants" 77 : 1281-1288, 1994

      25 Kisi, E. H., "Crystal Structures of Zirconia Phases and Their Inter-Relation" 153 (153): 1-36, 1998

      26 Afanasiev, P., "Control of the Textural Properties of Zirconium Oxide" 8 : 147-160, 1999

      27 Shuang, L., "Ceria-Based Catalysts for Soot Oxidation : A Review" 33 : 567-590, 2015

      28 Hong, E., "Catalytic Methane Combustion over Pd/ZrO2 Catalysts : Effects of Crys-talline Structure and Textural Properties" 232 : 544-552, 2018

      29 Zhang, H., "Catalytic Decomposition of Chlorodifluoromethane(HCFC-22)over Platinum Supported on TiO2-ZrO2 Mixed Oxides" 55 : 301-307, 2005

      30 Yamaguchi, T., "Application of ZrO2 as a Catalyst and a Catalyst Support" 20 : 199-217, 1994

      31 Liu, S., "An Exploration of Soot Oxidation over CeO2-ZrO2 Nanocubes : Do More Surface Oxygen Vacancies Benefit the Reaction?" 281 : 454-459, 2017

      32 Pyen, S., "Acidity of Co-Precipitated SiO2-ZrO2 Mixed Oxides in the Acid-Catalyzed Dehydrations of Iso-Propanol and Formic Acid" 448 : 71-77, 2018

      33 Kijeński, J., "Acidic Sites on Catalyst Surfaces and Their Determination" 5 : 1-120, 1989

      34 Fino, D., "A Review on the Catalytic Combustion of Soot in Diesel Particulate Filters for Automotive Applications : From Powder Catalysts to Structured Reactors" 509 : 75-96, 2016

      35 Miura, N., "A Review of Mixed-Potential Type Zirconia-Based Gas Sensors" 20 : 901-925, 2014

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-12-02 학술지명변경 한글명 : 화학공학 -> Korean Chemical Engineering Research(HWAHAK KONGHAK) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-08-25 학술지명변경 외국어명 : Korean Chem. Eng. Res. -> Korean Chemical Engineering Research KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-09-27 학회명변경 영문명 : The Korean Institute Of Chemical Engineers -> The Korean Institute of Chemical Engineers KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.43 0.43 0.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.37 0.35 0.496 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼