RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Including Bioconcentration Kinetics for the Prioritization and Interpretation of Regulatory Aquatic Toxicity Tests of Highly Hydrophobic Chemicals

      한글로보기

      https://www.riss.kr/link?id=A107428070

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Worldwide, regulations of chemicals require short-term toxicity data for evaluating hazards and risks of the chemicals. Current data requirements on the registration of chemicals are primarily based on tonnage and do not yet consider properti...

      <P>Worldwide, regulations of chemicals require short-term toxicity data for evaluating hazards and risks of the chemicals. Current data requirements on the registration of chemicals are primarily based on tonnage and do not yet consider properties of chemicals. For example, short-term ecotoxicity data are required for chemicals with production volume greater than 1 or 10 ton/y according to REACH, without considering chemical properties. Highly hydrophobic chemicals are characterized by low water solubility and slow bioconcentration kinetics, which may hamper the interpretation of short-term toxicity experiments. In this work, internal concentrations of highly hydrophobic chemicals were predicted for standard acute ecotoxicity tests at three trophic levels, algae, invertebrate, and fish. As demonstrated by comparison with maximum aqueous concentrations at water solubility, chemicals with an octanolwater partition coefficient (Kow) greater than 106 are not expected to reach sufficiently high internal concentrations for exerting effects within the test duration of acute tests with fish and invertebrates, even though they might be intrinsically toxic. This toxicity cutoff was explained by the slow uptake, i.e., by kinetics, not by thermodynamic limitations. Predictions were confirmed by data entries of the OECDs screening information data set (SIDS) (n = 746), apart from a few exceptions concerning mainly organometallic substances and those with inconsistency between water solubility and Kow. Taking error propagation and model assumptions into account, we thus propose a revision of data requirements for highly hydrophobic chemicals with log Kow > 7.4: Short-term toxicity tests can be limited to algae that generally have the highest uptake rate constants, whereas the primary focus of the assessment should be on persistence, bioaccumulation, and long-term effects.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼