RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재 SCIE

      이중관을 이용한 체외순환식 탄산가스 제거법에 관한 연구 = An Experimental Study on the Extracorporeal Carbon Dioxide Removal with a Double Lumen Tube

      한글로보기

      https://www.riss.kr/link?id=A3339952

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Intermittent positive pressure ventilation is used as a respiratory support for acute respiratroy failure. Adult respiratory distress syndrome(ARDS) revealed mortality rate of 70% as yet. Hypoxemia is foremost problem in ARDS. Though various ventilato...

      Intermittent positive pressure ventilation is used as a respiratory support for acute respiratroy failure. Adult respiratory distress syndrome(ARDS) revealed mortality rate of 70% as yet. Hypoxemia is foremost problem in ARDS. Though various ventilatory support is tried on ARDS, extracorporeal membrane oxygenation(ECMO) is to be recommended when hypoxemia and hypercarbia are refractory to conventional treatments. Neonatal venoarterial (VA) ECMO in USA is recognized as a therapeutic modality for neonatal respiratory failure and extracorporeal carhon dioxide removal(ECCO₂R) in Europe is used for adult respiratory distress syndome. The partial bypass using the membrane oxygenator aims at lung rest while relieving the hard ventilatory setting on the diseased lung. VA ECMO can provide circulatory support as well but the right internal jugular vein and the right common carotid artery are ligated for the cannulation of draiaage and perfusion catheters. Recent follow up study shows that VA ECMO may not be completelyfree from neurologic complications such as embolism in the systemic circulation and ill effects due to the reduction of blood supply to the immature lungs. ECCO₂R adopts low-flow venovenous(VV) bypass. It has been reported to be valuable for treatment of neonatal respiratory failure. VV bypass provides gas exchange but no cardiac support. Venous drainage and perfusion catheters are placed in the right atrium or vena cavae via the femoral or internal jugular veins. Compared to VA bypass, the consequences of embolizations are potentially fewer, no major artery is sacrificed. Highly oxygenated blood flows into pulmonary eirculatiom which may relieve pulmonary artery hypertension. Total respiratory support may be obtained by VV bypass, VV bypass requires approximately 20-50% more flow for total respiratory sopport due to recirculation of oxygenated blood. Recently VV bypass is chosen for neonatal resyiratoty failure in USA. They alliveate the entry criteria for ECMO using the parameter of oxygenation index(OI). V ECCO₂R using to-and-fro system is tried also for neonatal respiratory failure in Europe. A double lumen tube was developed to reduce the number of veins to be cannulated during VV bypass. It is constructed with the outer drainage cannula(14 Fr.) and the inner perfusion cannula(8 Fr.) whose opening is placed on the left side of outer cannula. If perfusion opening is placed on the right atrium facing the right ventricle, the venous blood can be drained from both superior and inferior vena cavae through several drainage opening. To evaluate the effectiveness of ECCO₂R with a double lumen tube, we developed an experimental model of acute respiratory failure on 8 mongrel dogs. Under general anesthesia with i.v, pentobarbital, a double lumen tube was introduced via the right internal jugular vein and it was connected with the extracorporeal circuit. Without ventilating the oxygenator during VV bypass, respiratory failure was induced by hypoventilation. After obtaining control hemodynamic and blood gas values der hypoventilation, we proceed to apneic oxygenation(AO), extracorporeal CO₂ removal(ECCO₂R) and controlled mechanical ventilation(CMV) in that order. Arterial pH in control was 7.180.09(meanSD), and it was increased to 7.33±0.08 and 7.28±0.08 in ECCO₂R and CMV, respectively. PaCO₂ in control was 69±9mmHg and it was decreased to 41±4mmHg and 47±7mmHg in ECCO R and CMV respectively. PaCO₂ in control was 62±15 mmHg and it was increased in AO, ECCO₂R and CMV. Mixed venous blood gas analysis showed the same result as arterial blood gas analysis. There was no difference between ECCO₂R and CMV. The bypass flow enough to remove CO₂ was 30∼50% of cardiac output. It is concluded that ECCO₂R using a double lumen tube was effective to control the carbon dioxide tension in arterial blood, and a double lumen tube may permit the simplicity of an operation and patient care as well as minimizing the bleeding during extracorporeal respiratory support

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼