RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Recent Advances in 3D Bioprinted Tumor Microenvironment

      한글로보기

      https://www.riss.kr/link?id=A106899879

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Tumors in vivo exist in a microenvironment, so-called tumor microenvironment (TME), which includes peripheral blood vessels, immune cells, fibroblasts, signalling molecules and extracellular matrix. In recent years, considerable efforts have been focu...

      Tumors in vivo exist in a microenvironment, so-called tumor microenvironment (TME), which includes peripheral blood vessels, immune cells, fibroblasts, signalling molecules and extracellular matrix. In recent years, considerable efforts have been focused on developing bioprinting methods because 3D bioprinting can better recapitulate TMEs by accurately printing different types of TME cells in spatially localised regions. In this review, we first introduce TME and 3D bioprinting methods and later discuss bioprinted TMEs as tumor equivalents for understanding tumor biology as well as testing drug efficacy.

      더보기

      참고문헌 (Reference)

      1 Han, S., "bioprinted vascularized tumour for drug testing" 21 : 2993-, 2020

      2 Osidak, E. O., "Viscoll collagen solution as a novel bioink for direct 3D bioprinting" 30 : 31-, 2019

      3 Wang, X., "Tumor-like lung cancer model based on 3D bioprinting" 8 : 501-, 2018

      4 Katayama, Y., "Tumor neovascularization and developments in therapeutics" 11 : 316-, 2019

      5 Schmidt, S. K., "Tumor cells develop defined cellular phenotypes after 3D-bioprinting in different bioinks" 8 : 1295-, 2019

      6 Munaz, A., "Three-dimensional printing of biological matters" 1 : 1-17, 2016

      7 Zhao, Y., "Three-dimensional printing of Hela cells for cervical tumor model in vitro" 6 : 035001-, 2014

      8 Hermida, M. A., "Three dimensional in vitro models of cancer: Bioprinting multilineage glioblastoma models" 75 : 100658-, 2020

      9 Whiteside, T.L., "The role of immune cells in the tumor microenvironment" 103-124, 2006

      10 Muz, B., "The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy" 3 : 83-92, 2015

      1 Han, S., "bioprinted vascularized tumour for drug testing" 21 : 2993-, 2020

      2 Osidak, E. O., "Viscoll collagen solution as a novel bioink for direct 3D bioprinting" 30 : 31-, 2019

      3 Wang, X., "Tumor-like lung cancer model based on 3D bioprinting" 8 : 501-, 2018

      4 Katayama, Y., "Tumor neovascularization and developments in therapeutics" 11 : 316-, 2019

      5 Schmidt, S. K., "Tumor cells develop defined cellular phenotypes after 3D-bioprinting in different bioinks" 8 : 1295-, 2019

      6 Munaz, A., "Three-dimensional printing of biological matters" 1 : 1-17, 2016

      7 Zhao, Y., "Three-dimensional printing of Hela cells for cervical tumor model in vitro" 6 : 035001-, 2014

      8 Hermida, M. A., "Three dimensional in vitro models of cancer: Bioprinting multilineage glioblastoma models" 75 : 100658-, 2020

      9 Whiteside, T.L., "The role of immune cells in the tumor microenvironment" 103-124, 2006

      10 Muz, B., "The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy" 3 : 83-92, 2015

      11 Xu, J., "TGF-β-induced epithelial to mesenchymal transition" 19 : 156-172, 2009

      12 Yue, K., "Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels" 73 : 254-271, 2015

      13 Sun, M., "Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue" 10 : 1290-, 2018

      14 Xu, C., "Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink" 30 : 9130-9138, 2014

      15 Van Den Bulcke, A. I., "Structural and rheological properties of methacrylamide modified gelatin hydrogels" 1 : 31-38, 2000

      16 Norotte, C., "Scaffold-free vascular tissue engineering using bioprinting" 30 : 5910-5917, 2009

      17 Duchamp, M., "Sacrificial bioprinting of a mammary ductal carcinoma model" 14 : 1700703-, 2019

      18 Gonzalez, H., "Roles of the immune system in cancer: from tumor initiation to metastatic progression" 32 : 1267-1284, 2018

      19 Diao, J., "Role and mechanisms of a three-dimensional bioprinted microtissue model in promoting proliferation and invasion of growth-hormone-secreting pituitary adenoma cells" 11 : 025006-, 2019

      20 Dzobo, K., "Recent trends in decellularized extracellular matrix bioinks for 3D printing: An updated review" 20 : 4628-, 2019

      21 Ma, X., "Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture" 185 : 310-321, 2018

      22 Berg, J., "Optimization of cell-laden bioinks for 3D bioprinting and efficient infection with influenza A virus" 8 : 13877-, 2018

      23 van Pel, D. M., "Modelling glioma invasion using 3D bioprinting and scaffold-free 3D culture" 12 : 723-730, 2018

      24 Langer, E. M., "Modeling tumor phenotypes in vitro with three-dimensional bioprinting" 26 : 608-623, 2019

      25 Jabłońska-Trypuć, A., "Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs" 31 : 177-183, 2016

      26 Schiele, N. R., "Laser-based direct-write techniques for cell printing" 2 : 032001-, 2010

      27 Kingsley, D. M., "Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies" 95 : 357-370, 2019

      28 Hakobyan, D., "Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study" 12 : 035001-, 2020

      29 Vinson, B. T., "Laser direct-write based fabrication of a spatially-defined, biomimetic construct as a potential model for breast cancer cell invasion into adipose tissue" 9 : 025013-, 2017

      30 Wang, X., "Gelatin-based hydrogels for organ 3D bioprinting" 9 : 401-, 2017

      31 Abbas, A. K., "Functional diversity of helper T lymphocytes" 383 : 787-793, 1996

      32 Park, J. A., "Freeform micropatterning of living cells into cell culture medium using direct inkjet printing" 7 : 14610-, 2017

      33 Braham, M. V. J., "Endosteal and perivascular subniches in a 3D bone marrow model for multiple myeloma" 24 : 300-312, 2018

      34 Jiang, T., "Directing the self-assembly of tumour spheroids by bioprinting cellular heterogeneous models within alginate/gelatin hydrogels" 7 : 4575-, 2017

      35 Masaeli, E., "Direct-write bioprinting approach to construct multilayer cellular tissues" 7 : 478-, 2020

      36 Gu, Z., "Development of 3D bioprinting: from printing methods to biomedical applications" 2019

      37 Wang, X., "Coaxial extrusion bioprinted shell-core hydrogel microfibers mimic glioma microenvironment and enhance the drug resistance of cancer cells" 171 : 291-299, 2018

      38 Dai, X., "Coaxial 3D bioprinting of self-assembled multicellular heterogeneous tumor fibers" 7 : 1457-, 2017

      39 Mondal, A., "Characterization and printability of Sodium alginate-Gelatin hydrogel for bioprinting NSCLC co-culture" 9 : 19914-, 2019

      40 Liu, T., "Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy" 12 : 86-, 2019

      41 Hu, W., "Cancer immunotherapy based on natural killer cells:cur-rent progress and new opportunities" 10 : 1205-, 2019

      42 Cirri, P., "Cancer associated fibroblasts:the dark side of the coin" 1 : 482-497, 2011

      43 Harty, J. T., "CD8+T cell effector mechanisms in resistance to infection" 18 : 275-308, 2000

      44 Zhang, Y. S., "Bioprinting the cancer microenvironment" 2 : 1710-1721, 2016

      45 Wang, X., "Bioprinting of glioma stem cells improves their endotheliogenic potential" 171 : 629-637, 2018

      46 Swaminathan, S., "Bioprinting of 3D breast epithelial spheroids for human cancer models" 11 : 025003-, 2019

      47 Knowlton, S., "Bioprinting for cancer research" 33 : 504-513, 2015

      48 Lee, C., "Bioprinting a novel glioblastoma tumor model using a fibrin-based bioink for drug screening" 12 : 78-84, 2019

      49 Guermonprez, P., "Antigen presentation and T cell stimulation by dendritic cells" 20 : 621-667, 2002

      50 Xu, M., "An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix" 31 : 3868-3877, 2010

      51 Hou, S., "Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening" 23 : 574-584, 2018

      52 Peela, N., "Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis" 133 : 176-207, 2017

      53 Xu, F., "A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform" 6 : 204-212, 2011

      54 Yi, H. -G., "A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy" 3 : 509-519, 2019

      55 Zhou, X., "A 3D bioprinting liver tumor model for drug screening" 5 : 196-213, 2016

      56 Reid, J. A., "A 3D bioprinter platform for mechanistic analysis of tumoroids and chimeric mammary organoids" 9 : 7466-, 2019

      57 Mirani, B., "A 3D bioprinted hydrogel mesh loaded with all-trans retinoic acid for treatment of glioblastoma" 854 : 201-212, 2019

      58 Heinrich, M. A., "3D-bioprinted minibrain:A glioblastoma model to study cellular interactions and therapeutics" 31 : 1806590-, 2019

      59 Murphy, S. V., "3D bioprinting of tissues and organs" 32 : 773-785, 2014

      60 Zhang, Z., "3D bioprinting of soft materials-based regenerative vascular structures and tissues" 123 : 279-291, 2017

      61 Wang, Y., "3D bioprinting of breast cancer models for drug resistance study" 4 : 4401-4411, 2018

      62 Zhou, X., "3D bioprinting a cell-laden bone matrix for breast cancer metastasis study" 8 : 30017-30026, 2016

      63 Mollica, P. A., "3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels" 95 : 201-213, 2019

      64 Meng, F., "3D bioprinted in vitro metastatic models via reconstruction of tumor microenvironments" 31 : 1806899-, 2019

      65 Dai, X., "3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility" 8 : 045005-, 2016

      66 Wang, X., "3D bioprinted glioma cell-laden scaffolds enriching glioma stem cells via epithelial–mesenchymal transition" 107 : 383-391, 2019

      67 Xie, M., "3D biofabrication of microfiber-laden minispheroids:a facile 3D cell co-culturing system" 8 : 109-117, 2020

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      학술지등록 한글명 : BioChip Journal
      외국어명 : BioChip Journal
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2011-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2009-01-01 평가 SCIE 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.33 0.25 0.88
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.66 0.53 0.255 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼