RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      Hot Deformation Characterization of Pure Aluminum Using artificial neural network (ANN) and Processing Map Considering Initial Grain Size

      한글로보기

      https://www.riss.kr/link?id=A107954290

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this investigation, processing maps and artificial neural network (ANN) models were carried out to describe and predictthe flow behavior of pure aluminum at various initial grain sizes in the hot working conditions. The elevated temperatureflow beh...

      In this investigation, processing maps and artificial neural network (ANN) models were carried out to describe and predictthe flow behavior of pure aluminum at various initial grain sizes in the hot working conditions. The elevated temperatureflow behavior of AA1070 aluminum was done through isothermal hot compressive tests in a large range of initial grain size(IGS) (50–450 μm), strain rate (0.005–0.5 s−1) and temperature (623–773 K). Consequences showed that the flow stress canbe remarkably influenced by the initial grain size at high temperatures. Based on the results, the ANN model trained witha feed-forward back-propagation learning algorithm which was prepared to describe the flow behavior of pure aluminumat the elevated temperatures. In which the initial grain size, strain, temperature and strain rate were taken as input data andtrue stress was used as target data. The results showed that the developed ANN model was a powerful method to predictthe complex non-linear of the hot flow behavior of pure aluminum. The processing map was plotted and analyzed via thedynamic material model as “stable” and “unstable” regions were determined by observing the microstructure evolution.
      Based on this, The optimum ranges for temperature and strain rate were 623–773 K and 0.05 s−1 respectively, for fine-grainedmicrostructure (lower than 50 μm) and were 650–720 K and 0.005–0.5 s−1 respectively, for coarse-grained microstructures(over than 50 μm).

      더보기

      참고문헌 (Reference)

      1 R. K. Roy, 41 : 289-292, 2006

      2 Y. C. Lin, 35 : 142-150, 2008

      3 H. R. Rezaei Ashtiani, 545 : 61-67, 2012

      4 S. Liu, 54 : 4366-4383, 2019

      5 H. J. McQueen, 322 : 43-63, 2002

      6 Y. C. Lin, 32 : 1733-1759, 2011

      7 K. Li, 28 : 981-994, 2019

      8 S. A. Sani, 6 : 134-144, 2018

      9 A. Bahrami, 34 : 335-341, 2005

      10 K. Singh, 6 : 1-8, 2016

      1 R. K. Roy, 41 : 289-292, 2006

      2 Y. C. Lin, 35 : 142-150, 2008

      3 H. R. Rezaei Ashtiani, 545 : 61-67, 2012

      4 S. Liu, 54 : 4366-4383, 2019

      5 H. J. McQueen, 322 : 43-63, 2002

      6 Y. C. Lin, 32 : 1733-1759, 2011

      7 K. Li, 28 : 981-994, 2019

      8 S. A. Sani, 6 : 134-144, 2018

      9 A. Bahrami, 34 : 335-341, 2005

      10 K. Singh, 6 : 1-8, 2016

      11 Y. C. Lin, 43 : 5508-5515, 2008

      12 G. Ji, 528 : 4774-4782, 2011

      13 H. Y. Li, 35 : 557-562, 2012

      14 N. S. Reddy, 492 : 276-282, 2008

      15 O. Sabokpa, 39 : 390-396, 2012

      16 M. El Mehtedi, 79 : 661-666, 2019

      17 M. C. Dixit, 4 : 1964-1971, 2017

      18 N. Haghdadi, 49 : 386-391, 2013

      19 Z. Lu, 38 : 192-197, 2011

      20 L. F. Guo, 23 : 1761-1765, 2013

      21 M. T. Anaraki, 29 : 1701-1706, 2008

      22 M. Muthu Krishnan, 5 : 716-723, 2018

      23 R. G. Song, 3 : 39-41, 1995

      24 C. Bruni, 177 : 323-326, 2006

      25 I. S. Jalham, 63 : 63-67, 2003

      26 H. R. Rezaei Ashtiani, 687 : 263-273, 2016

      27 J. Zhang, 34 : 15-21, 2012

      28 C. Yue, 45 : 462-466, 2009

      29 A. Jain, 486 : 545-555, 2008

      30 Y. Yang, 51 : 592-597, 2013

      31 A. Belyakov, 51 : 847-861, 2003

      32 G. Mann, 378 : 188-191, 2004

      33 H. R. Rezaei Ashtiani, 42 : 478-485, 2012

      34 A. G. Beer, 423 : 292-299, 2006

      35 M. R. Barnett, 51 : 19-24, 2004

      36 M. H. Parsa, 52 : 412-421, 2013

      37 H. Liang, 638 : 357-362, 2015

      38 Y. B. Tan, 454 : 413-420, 2014

      39 Y. Prasad, 43 : 243-258, 1998

      40 H. He, 160 : 293-302, 2019

      41 M. R. Rokni, 32 : 2339-2344, 2011

      42 P. Cavaliere, 55 : 136-142, 2005

      43 Y. Han, 565 : 342-350, 2013

      44 D. Samantaray, 528 : 8565-8572, 2011

      45 H. Sun, 19 : 1600607-, 2017

      46 M. S. Ozerdem, 199 : 437-439, 2008

      47 Y. Han, 67 : 93-103, 2013

      48 J. Liu, 103 : 200-205, 2000

      49 J. D. Olden, 154 : 135-150, 2002

      50 D. G. Garson, 6 : 47-51, 1991

      51 I. Dimopoulos, 120 : 157-165, 1999

      52 M. Scardi, 120 : 213-223, 1999

      53 A. Mohamadizadeh, 107 : 293-301, 2015

      54 S. Zhu, 25 : 3232-3239, 2015

      55 B. Li, 556 : 844-848, 2012

      56 H. R. Ezatpour, 606 : 240-247, 2014

      57 D. X. Wen, 620 : 319-332, 2014

      58 B. Ke, 845 : 156113-, 2020

      59 H. Zhang, 21 : 955-961, 2011

      60 H. R. Rezaei Ashtiani, 100 : 209-218, 2016

      61 Y. Sun, 742 : 356-368, 2018

      62 Y. Zhang, 662 : 320-329, 2016

      63 S. Wang, 225 : 110-121, 2015

      64 K. K. Saxena, 662 : 94-101, 2016

      65 F.J. Humphreys, "Recrystallization and Related Annealing Phenomena" Elsevier 415-450, 2004

      66 H. Ziegler, "Progress in Solid Mechanics" Wiley 63-193, 1963

      67 B. Verlinden, "Pergamon Materials Series, vol. 11" Elsevier 365-404, 2007

      68 Y.V.R.K. Prasad, "Hot Working Guide: A Compendium of Processing Maps" ASM international 1997

      69 G. E. Totten, "Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes" CRC Press 2003

      70 C.L.P. Hui, "Artifcial Neural Networks - Application" IntechOpen 2011

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2009-12-29 학회명변경 한글명 : 대한금속ㆍ재료학회 -> 대한금속·재료학회 KCI등재
      2008-01-01 평가 SCI 등재 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 2.05 0.91 1.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.03 0.86 0.678 0.22
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼