RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Performance of Self-Compacting Concrete Containing Different Mineral Admixtures

        P. Ramanathan,I. Baskar,P. Muthupriya,R. Venkatasubramani 대한토목학회 2013 KSCE JOURNAL OF CIVIL ENGINEERING Vol.17 No.2

        Self-Compacting Concrete is an innovative concrete that does not require vibration for placing and compaction. It is able to flow under its own weight, completely filling formwork and achieving full compaction, even in the presence of congested reinforcement. One of the disadvantages of self-compacting concrete is its cost, associated with the use of high volumes of Portland cement and use of chemical admixtures. One alternative to reduce the cost of self-compacting concrete is the use of mineral admixtures such as silica fume, ground granulated blast furnace slag and fly ash, which is finely, divided materials added to concrete during mixture procedure. When these mineral admixtures replace a part of the Portland cement, the cost of self-compacting concrete will be reduced especially if the mineral admixtures are waste or industrial by-product. Moreover, the use of mineral admixtures in the production of selfcompacting concrete not only provides economical benefits but also reduces heat of hydration. The incorporation of mineral admixtures also eliminates the need for viscosity-enhancing chemical admixtures. The lower water content of the concrete leads to higher durability, in addition to better mechanical integrity of the structure. This paper presents an experimental investigation on strength aspects like compressive, flexural and split tensile strength of self compacting concrete containing different mineral admixtures and workability tests for different mineral admixtures (slump, L-box, U-box and T50) are carried out. The methodology adopted is that mineral admixtures are replaced by 30%, 40% and 50% for Portland cement and performance is measured and compared. The influence of mineral admixtures on the workability, compressive strength, splitting tensile strength and flexural strength of self-compacting concrete was investigated. The mix proportion is obtained as per the guidelines given by European Federation of producers and contractors of special products for structure. The following inferences were made; optimum dosage of super plasticizer enhanced the flow property of the concrete. As a result, overall improvements in the flow and filling ability of the self-compacting concrete were observed. It is observed that when mineral admixtures used in self-compacting concrete, can reduce the amount of super- plasticizer necessary to achieve a given fluidity. It should be noted that the effect of mineral admixtures on admixture requirements is significantly dependent on their particle size distribution as well as particle shape and surface characteristics. From this view point, a cost effective self-compacting concrete design can be obtained by incorporating reasonable amounts of silica fume, fly ash, and ground granulated blast furnace slag.

      • KCI등재

        The Laboratory Experiment of the Effect of Quantity and Length of Plastic Fiber on Compressive Strength and Tensile Resistance of Self-Compacting Concrete

        Mohsen Oghabi,Mehdi Khoshvatan 대한토목학회 2020 KSCE JOURNAL OF CIVIL ENGINEERING Vol.24 No.8

        Self-compacting concrete (SCC) is known as a high-performance concrete that molds by its weight and without the need for vibration or impact and easily crosses the small spaces between the rebars. Various additives have been used in recent research to construct the self-compacting concrete in order to achieve higher strengths and improved performances. Because of the utilization of self-compacting concrete in bulk concreting like dams, silos, and tanks, the optimized use for reducing the final costs of the project is important and essential. A fundamental question in improving the fiber self-compacting concrete behavior is that what is the optimum amount of fiber addition for low fiber concentrations. In this research, the effect of the addition of fiber with concentrations lower than 1,000 gr (100, 250, 500, and 1,000 gr) on the self-compacting concrete behavior with different fiber lengths have been studied. This research examined the effect of the quantity and length of recycled plastic fiber on the compressive strength and tensile resistance of self-compacting concrete. Slump flow experiment L box and sieve and compressive and tensile strength experiment were done on samples. In this study, 13 plans of concrete mixing were surveyed with ratio of water to cement 0.4. One plan without fiber was chosen as a reference sample and 12 self-compacting concrete with plastic Fibers were made in the laboratory with dimensions of 1, 2, 3 cm with their amounts equal 100, 250, 500 and 1,000 g/m3. Laboratory results showed that increasing the amount and length of fibers led to decreased flowability and passability plus increased detachment in samples. By increasing plastic fibers, compressive strength increased by 8.4% and tensile resistance increased by 4.22%. Their elevation depends on fibers amount. Fiber length did not affect the compressive strength and tensile resistance very much. The increase was such that the tensile strength increased by about 100% and 200% as the length increased from 1 to 2 cmand 1 to 3 cm, respectively. The 1 cm plastic fiber length could be selected as the optimum length for increasing the compressive strength by considering the efficiency.

      • KCI등재

        Optimization of Mix Proportion of Self-compacting Concrete Based on Single Fluid Model

        Xiuzhi Zhang,Chong Zhang,Mengdi Bi,Haibo Yang,Hailong Sun,Ru Mu 대한토목학회 2022 KSCE JOURNAL OF CIVIL ENGINEERING Vol.26 No.3

        The study aims to optimize the mix proportion of self-compacting concrete according to the workability and compressive strength. Firstly, based on computational fluid dynamics, the flowability and filling ability of self-compacting concrete were simulated by the single-fluid model to verify the single-fluid model. And then, the simulation of casting a pre-cambered composite beam was carried out. In the end, the mix proportion was optimized considering the filling ability and the compressive strength of self-compacting concrete. The results showed that increasing sand rate can improve the workability and decrease the rheological parameters of self-compacting concrete. The mixture with a 45% sand ratio in the case of 3% silica fume alone or 43% sand ratio in the case of 30% granulated blast furnace slag and 3% silica fume had adequate filling ability and excellent long term compressive strength. Moreover, the model can be used to simulate the filling ability and passing capacity of self-compacting concrete and the maximum error between the simulation results and the actual measured value is 4.80%. When the concrete mixture is considered to be uniform, namely, without considering the effect of the aggregates, the single-fluid model can simulate the casting of self-compacting concrete.

      • Rheological Properties of Binder Pastes for Self-Compacting Concrete

        Park, Yon-Dong Korea Concrete Institute 2001 KCI concrete journal Vol.13 No.1

        This paper investigated rheological properties of binder pastes for self-compacting high performance concrete. Six mixtures of self-compacting concrete were initially prepared and tested to estimate self-compacting property. Then, the binder pastes used in self-compacting concrete were tested for rheological properties using a rotary type rheometer. Binder pastes with different water-binder ratios arid flow values were also examined to evaluate their rheological characteristics. The binders were composed of ordinary Portland cement, fly ash, two types of pulverized blast-furnace slag, and limestone powder. The flow curves of binder pastes were obtained by a rotary type rheometer with shear rate control. Slump flow, O-funnel time, box, and L-flow teats were carried out to estimate self-compacting property of concrete. The flow curves of binder pastes for self-compacting concrete had negligible yield stresses and showed an approximately linear behavior at higher shear rates beyond a certain limit. Test results also indicated that the binders incorporating fly ash are more appropriate than the other types of binders in quality control of self-compacting concrete.

      • KCI등재

        Performance of concrete structures with a combination of normal SCC and fiber SCC

        Kianoosh Farhang,Hamoon Fathi 사단법인 한국계산역학회 2017 Computers and Concrete, An International Journal Vol.20 No.6

        Fiber reinforced concretes exhibit higher tensile strength depending on the percent and type of the fiber used. These concretes are used to reduce cracks and improve concrete behavior. The use of these fibers increases the production costs and reduces the compressive strength to a certain extent. Therefore, the use of fiber reinforced concrete in regions where higher tensile strength is required can cut costs and improve the overall structural strength. The behavior of fiber reinforced concrete and normal concrete adjacent to each other was investigated in the present study. The concrete used was self-compacting and did not require vibration. The samples had 0, 1, 2 and 4 wt% polypropylene fibers. 15 cm sample cubes were subjected to uniaxial loads to investigate their compressive strength. Fiber Self-Compacting Concrete was poured in the mold up to 0, 30, 50, 70 and 100 percent of the mold height, and then Self-Compacting Concrete without fiber was added to the empty section of that mold. In order to investigate concrete behavior under bending moment, concrete beam samples with similar conditions were prepared and subjected to the three-point bending flexural test. The results revealed that normal Self-Compacting Concrete and Fiber Self-Compacting Concrete may be used in adjacent to each other in structures and structural members. Moreover, no separation was observed at the interface of Fiber Self-Compacting Concrete and Self-Compacting Concrete, either in the cubic samples under compression or in the concrete beams under bending moment.

      • Influence of coarse aggregate properties on specific fracture energy of steel fiber reinforced self compacting concrete

        Raja Rajeshwari, B.,Sivakumar, M.V.N. Techno-Press 2020 Advances in concrete construction Vol.9 No.2

        Fracture properties of concrete depend on the mix proportions of the ingredients, specimen shape and size, type of testing method used for the evaluation of fracture properties. Aggregates play a key role for changes in the fracture behaviour of concrete as they constitute about 60-75 % of the total volume of the concrete. The present study deals with the effect of size and quantity of coarse aggregate on the fracture behaviour of steel fibre reinforced self compacting concrete (SFRSCC). Lower coarse aggregate and higher fine aggregate content in SCC results in the stronger interfacial transition zone and a weaker stiffness of concrete compared to vibrated concrete. As the fracture properties depend on the aggregates quantity and size particularly in SCC, three nominal sizes (20 mm, 16 mm and 12.5 mm) and three coarse to fine aggregate proportions (50-50, 45-55, 40-60) were chosen as parameters. Wedge Split Test (WST), a stable test method was adopted to arrive the requisite properties. Specimens without and with guide notch were investigated. The results are indicative of increase in fracture energy with increase in coarse aggregate size and quantity. The splitting force was maximum for specimens with 12.5 mm size which is associated with a brittle failure in the pre-ultimate stage followed by a ductile failure due to the presence of steel fibres in the post-peak stage.

      • KCI등재

        Optimal Mixture Proportion for High Performance Concrete Incorporating Ground Granulated Blast Furnace Slag

        최재진,김은겸,유정훈 한국콘크리트학회 2005 콘크리트학회논문집 Vol.17 No.3

        In this study, a mix design for self compacting concrete was based on Okamuras method and concrete incorporated just a ground granulated blast furnace slag. Replacement ratio of slag is in the range of 20-80% of cement matrix by volume. For the optimal self compactability in mixture incorporating ground granulated blast furnace slag, the paste and mortar tests were first completed. Then the slump flow, elapsed time of 500mm slump flow, V funnel time and filling height by U type box were conducted in concrete. The volume of coarse aggregate in self compacting concrete was in the range of 50-60% to the solid volume percentage of coarse aggregate. Finally, the compressive and splitting tensile strengths were determined in the hardened self compacting concrete incorporating ground granulated blast furnace slag. From the test results, it is desirable for self compacting concrete that the replacement of ground granulated blast furnace slag is in the range of 40-60% of cement matrix by volume and the volume of coarse aggregate to the solid volume percentage of coarse aggregate with a limit of 55%.

      • KCI등재

        Evaluating the settlement of lightweight coarse aggregate in self-compacting lightweight concrete

        Moosa Mazloom,Farzan Mahboubi 사단법인 한국계산역학회 2017 Computers and Concrete, An International Journal Vol.19 No.2

        The purpose of this paper is to evaluate the settlement of lightweight coarse aggregate of self-compacting lightweight concrete (SCLC) after placement of concrete on its final position. To investigate this issue, sixteen samples of concrete mixes were made. The water to cementitious materials ratios of the mixes were 0.35 and 0.4. In addition to the workability tests of self-compacting concrete (SCC) such as slump flow, V-funnel and L-box tests, a laboratory experiment was made to examine the segregation of lightweight coarse aggregate in concrete. Because of the difficulties of this test, the image processing technique of MATLAB software was used to check the segregation above too. Moreover, the fuzzy logic technique of MATLAB software was utilized to improve the clarity of the borders between the coarse aggregate and the paste of the mixtures. At the end, the results of segregation tests and software analyses are given and the accuracy of the software analyses is evaluated. It is worth noting that the minimum and maximum differences between the results of laboratory tests and software analyses were 1.2% and 9.19% respectively. It means, the results of image processing technique looks exact enough for estimating the segregation of lightweight coarse aggregate in SCLC.

      • KCI등재

        Self-compacting light-weight concrete; mix design and proportions

        Behnam Vakhshouri,Shami Nejadi 국제구조공학회 2016 Structural Engineering and Mechanics, An Int'l Jou Vol.58 No.1

        Utilization of mineral and chemical admixtures in concrete technology has led to changes in the formulation and mix design in recent decades, which has, in turn, made the concrete stronger and more durable. Lightweight concrete is an excellent solution in terms of decreasing the dead load of the structure, while self-compacting concrete eases the pouring and removes the construction problems. Combining the advantages of lightweight concrete and self-compacting concrete is a new and interesting research topic. Considering its light weight of structure and ease of placement, self-compacting lightweight concrete may be the answer to the increasing construction requirements of slender and more heavily reinforced structural elements. Twenty one laboratory experimental investigations published on the mix proportion, density and mechanical properties of lightweight self-compacting concrete from the last 12 years are analyzed in this study. The collected information is used to investigate the mix proportions including the chemical and mineral admixtures, light weight and normal weight aggregates, fillers, cement and water. Analyzed results are presented in terms of statistical expressions. It is very helpful for future research to choose the proper components with different ratios and curing conditions to attain the desired concrete grade according to the planned application.

      • KCI등재

        Predicting strength of SCC using artificial neural network and multivariable regression analysis

        Prasenjit saha,Prasad M.L.V,P. Rathish Kumar 사단법인 한국계산역학회 2017 Computers and Concrete, An International Journal Vol.20 No.1

        In the present study an Artificial Neural Network (ANN) was used to predict the compressive strength of self-compacting concrete. The data developed experimentally for self-compacting concrete and the data sets of a total of 99 concrete samples were used in this work. ANN’s are considered as nonlinear statistical data modeling tools where complex relationships between inputs and outputs are modeled or patterns are found. In the present ANN model, eight input parameters are used to predict the compressive strength of self-compacting of concrete. These include varying amounts of cement, coarse aggregate, fine aggregate, fly ash, fiber, water, super plasticizer (SP), viscosity modifying admixture (VMA) while the single output parameter is the compressive strength of concrete. The importance of different input parameters for predicting the strengths at various ages using neural network was discussed in the study. There is a perfect correlation between the experimental and prediction of the compressive strength of SCC based on ANN with very low root mean square errors. Also, the efficiency of ANN model is better compared to the multivariable regression analysis (MRA). Hence it can be concluded that the ANN model has more potential compared to MRA model in developing an optimum mix proportion for predicting the compressive strength of concrete without much loss of material and time.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼