RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        CNT 기반의 직물센서 구현 방법에 따른 관절동작 센싱 효율 평가

        조현승 ( Hyun-seung Cho ),양진희 ( Jin-hee Yang ),이주현 ( Joo-hyeon Lee ) 한국감성과학회 2021 감성과학 Vol.24 No.4

        본 연구의 목적은 본 연구에서는 탄소나노튜브 기반의 신축성 직물 센서의 모양과 의복 상 부착 위치가 아동의 사지 관절 동작 센싱 성능에 미치는 영향을 분석하고, 이를 통해 아동의 사지 동작 센싱에 적합한 직물 동작 센서의 요건을 규명하고자 하였다. 실험 대상 아동에게 2종의 센서 모양과 2개의 센서 부착 위치에 따라 조작된 실험복을 착의시킨 후 60 deg/sec의 속도로, 팔과 다리의 굽힘-폄 동작(60°, 90°의 동작 각도별로 10회씩 3회 반복 동작, 총 60회 동작)에 의한 직물 센서의 신장과 수축에 따른 전압의 변화량을 측정하였으며, 가속도 센서를 함께 부착하여, 센싱 결과의 일치도를 분석함으로써 신뢰도를 검증하였다. 실험 결과 아동의 팔과 다리 동작을 가장 효율적으로 측정할 수 있는 직물 센서의 구성 요건은 장방형 모양 센서 및 관절로부터 4㎝ 아래 부위에 부착된 센서로 나타났다. 본 연구에서는 아동의 사지 동작 측정에 적합한 직물 센서를 개발하고 관절동작 센싱에 적합한 센서의 모양과 의복 상 부착 위치에 대한 조건을 분석하였으며, 의복에 통합된 유연한 직물 센서를 활용하여 인체 부위별 동작 센싱이 가능하다는 것을 규명하였다. This study aimed to determine the effects of the shape and attachment position of stretchable textile sensors coated with carbon nanotube on their performance when used to measure children's joint movements. Moreover, the child-safe requirements for fabric motion sensors are established. The child participants were advised to wear integrated clothing equipped with the sensors of various shapes (rectangular and boat-shaped) and attachment positions (at the knee and elbow joints or 4 cm below the joints). The voltage change induced by the elongation and contraction of the fabric sensors was determined for arm and leg flexion-extension motions at 60 deg/s (three measurements of 10 repeats each for 60°and 90°angles, for a total of 60 repetitions). Their dependability was determined by comparing the fabric motion sensors to the associated acceleration sensors. The experimental results indicate that the rectangular-shaped sensor affixed 4 cm below the joint is the most effective fabric motion sensor for measuring children's arm and leg motions. In this study, we designed a textile sensor capable of tracking children's joint motion and analyzed the sensor shape and attachment position on motion sensing clothing. We demonstrated that flexible fabric sensors integrated into garments may be used to detect the joint motions of the human body.

      • KCI등재

        A Basic Study on Implementing Optimal Function of Motion Sensor for Bridge Navigational Watch Alarm System

        Tae-Gweon JEONG,Dong-Hyuk BAE 한국항해항만학회 2014 한국항해항만학회지 Vol.38 No.6

        A Bridge Navigational Watch Alarm System (hereafter 'BNWAS') is to monitor and detect if an officer of watch(hereafter ‘OOW’) keeps a sharp lookout on the bridge. The careless lookout of an OOW could lead to marine accidents. For this reason on June 5th, 2009, IMO decided that a ship is equipped with a BNWAS. However, an existing BNWAS gives the OOW a lot of inconvenience and stress in its operation. It requires that the OOW should press reset buttons to confirm their alert watch on the bridge at every three to twelve minute. Many OOWs have complained that at some circumstances they cannot focus on their bridge activities including watch-keeping due to a lots of resetting inputs of BNWAS. Accordingly, IMO has allowed the use of a motion sensor as a resetting device. The motion sensor detects the movements of human body on the bridge and subsequently sends reset signals directly to BNWAS automatically. As a result, OOWs can work uninterrupted. However, some of classification societies and flag authorities have a slightly different stance on the use of motion sensor as a resetting method for BNWAS. The reason is that the motion sensor may trigger false reset signals caused by the motion of objects on the bridge, especially a slight movement such as toss and turn of human body which can extend the period of careless watch. As a basic study to minimize the false reset signals, this paper proposes a simple configuration of BNWAS, which consists of only three motion sensors associated with ‘AND’ and ‘OR’ logic gates. Additionally, several considerations are also proposed for the implementation of motion sensors. This study found that the proposed configuration which consists of three motion sensors is better than an existing one by reducing false reset signals caused by a slight movement of human body in one’s sleep. The proposed configuration in this paper filters false reset signals and is simple to be implemented on existing vessels. In addition, it can be easily installed just by a basic electrical knowledge.

      • KCI등재

        EF 센서기반 손동작 신호 감지 및 자동 프레임 추출

        이훈민(Hummin Lee),정선일(Sunil Jung),김영철(Youngchul Kim) 한국스마트미디어학회 2020 스마트미디어저널 Vol.9 No.4

        본 논문에서는 사람의 손동작에 의해 모바일장치상의 전기장센서를 통해 감지되는 동작신호의 실시간 검출 및 프레임 추출 알고리즘을 제안한다. 동작인식에 사용되는 전기장센서는 주변 환경 및 시점에 따라 랜덤잡음 및 센서 표면의 초기 대전상태의 가변적인 특성으로 인해 안정적으로 동작신호를 검출하는데 어려움이 있다. 본 논문에서는 이와 같은 환경에서도 안정적이고 강건하게 동작신호를 감지하여 검출할 수 있는 동적문턱치 방법(dynamic thresholding method)을 제안한다. 동작발생감지여부는 10Hz low-pass 필터와 MA(Motion Average) 필터를 통한 입력신호가 특정 문턱 전압값을 넘을 경우 감지되는데 감지시점 센서상의 정전하상태가 가변적이므로 주기적으로 offset 값을 계산하여 새로운 문턱치를 동적으로 적용하는 방법이다. 이러한 방법으로 동작신호 감지율을 98% 이상으로 향상 시킬 수 있었다. 또한 일단 동작이 감지되면 정문턱치(positive thresold)와 부문턱치(negative threshold)의 통과시점, 횟수와 평균 동작주기를 고려한 동작신호프레임 알고리즘을 제안하였으며 이의 프레임추출 성공률도 98% 이상의 성능을 보였다. 본 논문에서 제안한 알고리즘으로 추출된 동작신호는 이후 신호정규화를 거쳐 LSTN 심층신경망 인식부를 거쳐 높은 손동작 인식률을 보임으로서 제안된 알고리즘의 우수함을 입증하였다. In this paper, we propose a real-time method of detecting hand motions and extracting the signal frame induced by EF(Electric Field) sensors. The signal induced by hand motion includes not only noises caused by various environmental sources as well as sensor’s physical placement, but also different initial off-set conditions. Thus, it has been considered as a challenging problem to detect the motion signal and extract the motion frame automatically in real-time. In this study, we remove the PLN(Power Line Noise) using LPF with 10Hz cut-off and successively apply MA(Moving Average) filter to obtain clean and smooth input motion signals. To sense a hand motion, we use two thresholds(positive and negative thresholds) with offset value to detect a starting as well as an ending moment of the motion. Using this approach, we can achieve the correct motion detection rate over 98%. Once the final motion frame is determined, the motion signals are normalized to be used in next process of classification or recognition stage such as LSTN deep neural networks. Our experiment and analysis show that our proposed methods produce better than 98% performance in correct motion detection rate as well as in frame-matching rate.3

      • SCOPUSKCI등재

        보행주기 검출용 모션 센서 시스템의 비교

        박선우(Sun Woo Park),손량희(Ryang Hee Sohn),류기홍(Ki Hong Ryu),김영호(Young Ho Kim) Korean Society for Precision Engineering 2010 한국정밀공학회지 Vol.27 No.2

        Gait phase detection is important for evaluating the recovery of gait ability in patients with paralysis, and for determining the stimulation timing in FES walking. In this study, three different motion sensors(tilt sensor, gyrosensor and accelerometer) were used to detect gait events(heel strike, HS; toe off, TO) and they were compared one another to determine the most applicable sensor for gait phase detection. Motion sensors were attached on the shank and heel of subjects. Gait phases determined by the characteristics of each sensor's signal were compared with those from FVA. Gait phase detections using three different motion sensors were valid, since they all have reliabilities more than 95%, when compared with FVA. HS and TO were determined by both FVA and motion sensor signals, and the accuracy of detecting HS and TO with motion sensors were assessed by the time differences between FVA and motion sensors. Results show of that the tilt sensor and the gyrosensor could detect gait phase more accurately in normal subjects. Vertical acceleration from the accelerometer could detect HS most accurately in hemiplegic patient group A. The gyrosensor could detect HS and TO most accurately in hemiplegic patient group A and B. Valid error ranges of HS and TO were determined by 3.9 % and 13.6 % in normal subjects, respectively. The detection of TO from all sensor signals was valid in both patient group A and B. However, the vertical acceleration detected HS validly in patient group A and the gyrosensor detected HS validly in patient group B. We could determine the most applicable motion sensors to detect gait phases in hemiplegic patients. However, since hemiplegic patients have much different gait patterns one another, further experimental studies using various simple motion sensors would be required to determine gait events in pathologic gaits.

      • KCI등재후보

        실측 데이터 기반 모션센서 에뮬레이터의 개발

        이민석,Lee, MinSuk 대한임베디드공학회 2011 대한임베디드공학회논문지 Vol.6 No.2

        This paper describes the development of an open source motion sensor emulator. It helps developers to understand the motion sensor and its data better. Through this emulator, the realtime or stored motion sensor data can be applied to the applications that utilize motion sensors. The data of motion sensors which include accelerometer sensor, magnetic field sensor, gyro sensor, GPS, and so on, can be collected by using smart phones or motion sensors. We also describe a visualizer which shows various graphs, video and 3D animations based on the data sent by the emulator. It helps developers to understand motion sensors and how to use the sensors. The developed emulator is compatible with Android sensor simulator.

      • KCI등재

        융합센서 기반의 모션캡처 시스템

        김병열(Byung-Yul Kim),한영준(Young-Joon Han),한헌수(Hern-Soo Hahn) 한국컴퓨터정보학회 2010 韓國컴퓨터情報學會論文誌 Vol.15 No.4

        본 논문에서는 기존의 광학식 모션 캡처에서 생길 수 있는 마커들 간의 간섭이나 복잡한 시스템 구성으로 인한 시스템 설치의 복잡성 문제들을 해결하기 위해, 2차원 위치정보를 제공하는 단일 카메라와 특정부위의 방향정보를 제공하는 가속도센서와 자이로 센서로 구성된 동작센서를 융합하여 간편한 모션 캡처를 실현하는 새로운 기법을 제안한다. 본 논문의 동작 인식은 크게 영상기반 위치 정보와 동작센서기반 방향 정보의 융합을 통해 이루어진다. 영상은 보이는 부위에 장착된 컬러마커의 위치를 기준점으로 제공하고, 동작센서들은 각 패지의 이동방향과 속도를 측정하여 영상에서 제공하는 마커들의 3차원 포즈정보를 알아 낼 수 있다. 제안하는 시스템은 사람동작의 측정에 필요한 최소한의 센서정보를 사용함으로써 시스템의 구성과 센서의 설치가 매우 간단하며 경제적이라는 장점을 갖는다. 이러한 장점은 다양한 실험을 통해 검증하였다. At the aim of solving the problems appearing in traditional optical motion capturing systems such as the interference among multiple patches and the complexity of sensor and patch allocations, this paper proposes a new motion capturing system which is composed of a single camera and multiple motion sensors. A motion sensor is consisted of an acceleration sensor and a gyro sensor to detect the motion of a patched body and the orientation (roll, pitch, and yaw) of the motion, respectively. Although Image information provides the positions of the patches in 2D, the orientation information of the patch motions acquired by the motion sensors can generate 3D pose of the patches using simple equations. Since the proposed system uses the minimum number of sensors to detect the relative pose of a patch, it is easy to install on a moving body and can be economically used for various applications. The performance and the advantages of the proposed system have been proved by the experiments.

      • KCI등재

        은 나노입자 프린팅 기반의 재활치료용 신축성 관절센서 개발

        ( Woen-sik Chae ),( Jae-hu Jung ) 한국운동역학회 2021 한국운동역학회지 Vol.31 No.3

        Objective: The purpose of this study was to develop a stretchable joint motion sensor that is based on silver nano-particle. Through this sensor, it can be utilized as an equipment for rehabilitation and analyze joint movement. Method: In this study, precursor solution was created, after that, nozel printer (Musashi, Image master 350PC) was used to print on a circuit board. Sourcemeter (Keithley, Keithley-2450) was used in order to evaluate changes of electric resistance as the sensor stretches. In addition, the sensor was attached on center of a knee joint to 2 male adults, and performed knee flexion-extension in order to evaluate accurate analysis; 3 infrared cameras (100 Hz, Motion Master 100, Visol Inc., Korea) were also used to analyze three dimensional movement. Descriptive statistics were suggested for comparing each accuracy of measurement variables of joint motions with the sensor and 3D motions. Results: The change of electric resistance of the sensor indicated multiple of 30 times from initial value in 50% of elongation and the value of electric resistance were distinctively classified by following 10%, 20%, 30%, 40% of elongation respectively. Through using the sensor and 3D camera to analyze movement variable, it showed a resistance of 99% in a knee joint extension, whereas, it indicated about 80% in flexion phase. Conclusion: In this research, the stretchable joint motion sensor was created based on silver nanoparticle that has high conductivity. If the sensor stretches, the distance between nanoparticles recede which lead gradual disconnection of an electric circuit and to have increment of electric resistance. Through evaluating angle of knee joints with observation of sensor's electric resistance, it showed similar a result and propensity from 3D motion analysis. However, unstable electric resistance of the stretchable sensor was observed when it stretches to maximum length, or went through numerous joint movements. Therefore, the sensor need complement that requires stability when it comes to measuring motions in any condition.

      • KCI등재

        웨어러블 센서를 활용한 경량 인공신경망 기반 손동작 인식기술

        이형규 대한임베디드공학회 2022 대한임베디드공학회논문지 Vol.17 No.4

        Motion recognition is very useful for implementing an intuitive HMI (Human-Machine Interface). In particular, hands are the body parts that can move most precisely with relatively small portion of energy. Thus hand motion has been used as an efficient communication interface with other persons or machines. In this paper, we design and implement a light-weight ANN (Artificial Neural Network)-based hand motion recognition using a state-of-the-art flex sensor. The proposed design consists of data collection from a wearable flex sensor, preprocessing filters, and a light-weight NN (Neural Network) classifier. For verifying the performance and functionality of the proposed design, we implement it on a low-end embedded device. Finally, our experiments and prototype implementation demonstrate that the accuracy of the proposed hand motion recognition achieves up to 98.7%. Motion recognition is very useful for implementing an intuitive HMI (Human-Machine Interface). In particular, hands are the body parts that can move most precisely with relatively small portion of energy. Thus hand motion has been used as an efficient communication interface with other persons or machines. In this paper, we design and implement a light-weight ANN (Artificial Neural Network)-based hand motion recognition using a state-of-the-art flex sensor. The proposed design consists of data collection from a wearable flex sensor, preprocessing filters, and a light-weight NN (Neural Network) classifier. For verifying the performance and functionality of the proposed design, we implement it on a low-end embedded device. Finally, our experiments and prototype implementation demonstrate that the accuracy of the proposed hand motion recognition achieves up to 98.7%.

      • KCI등재

        A Basic Study on Implementing Optimal Function of Motion Sensor for Bridge Navigational Watch Alarm System

        Jeong, Tae-Gweon,Bae, Dong-Hyuk Korean Institute of Navigation and Port Research 2014 한국항해항만학회지 Vol.38 No.6

        A Bridge Navigational Watch Alarm System (hereafter 'BNWAS') is to monitor and detect if an officer of watch(hereafter 'OOW') keeps a sharp lookout on the bridge. The careless lookout of an OOW could lead to marine accidents. For this reason on June 5th, 2009, IMO decided that a ship is equipped with a BNWAS. However, an existing BNWAS gives the OOW a lot of inconvenience and stress in its operation. It requires that the OOW should press reset buttons to confirm their alert watch on the bridge at every three to twelve minute. Many OOWs have complained that at some circumstances they cannot focus on their bridge activities including watch-keeping due to a lots of resetting inputs of BNWAS. Accordingly, IMO has allowed the use of a motion sensor as a resetting device. The motion sensor detects the movements of human body on the bridge and subsequently sends reset signals directly to BNWAS automatically. As a result, OOWs can work uninterrupted. However, some of classification societies and flag authorities have a slightly different stance on the use of motion sensor as a resetting method for BNWAS. The reason is that the motion sensor may trigger false reset signals caused by the motion of objects on the bridge, especially a slight movement such as toss and turn of human body which can extend the period of careless watch. As a basic study to minimize the false reset signals, this paper proposes a simple configuration of BNWAS, which consists of only three motion sensors associated with 'AND' and 'OR' logic gates. Additionally, several considerations are also proposed for the implementation of motion sensors. This study found that the proposed configuration which consists of three motion sensors is better than an existing one by reducing false reset signals caused by a slight movement of human body in one's sleep. The proposed configuration in this paper filters false reset signals and is simple to be implemented on existing vessels. In addition, it can be easily installed just by a basic electrical knowledge.

      • KCI등재

        A Basic Study on Implementing Optimal Function of Motion Sensor for Bridge Navigational Watch Alarm System

        정태권,배동혁 한국항해항만학회 2014 한국항해항만학회지 Vol.38 No.6

        A Bridge Navigational Watch Alarm System (hereafter 'BNWAS') is to monitor and detect if an officer of watch(hereafter ‘OOW’) keeps a sharp lookout on the bridge. The careless lookout of an OOW could lead to marine accidents. For this reason on June 5th, 2009, IMO decided that a ship is equipped with a BNWAS. However, an existing BNWAS gives the OOW a lot of inconvenience and stress in its operation. It requires that the OOW should press reset buttons to confirm their alert watch on the bridge at every three to twelve minute. Many OOWs have complained that at some circumstances they cannot focus on their bridge activities including watch-keeping due to a lots of resetting inputs of BNWAS. Accordingly, IMO has allowed the use of a motion sensor as a resetting device. The motion sensor detects the movements of human body on the bridge and subsequently sends reset signals directly to BNWAS automatically. As a result, OOWs can work uninterrupted. However, some of classification societies and flag authorities have a slightly different stance on the use of motion sensor as a resetting method for BNWAS. The reason is that the motion sensor may trigger false reset signals caused by the motion of objects on the bridge, especially a slight movement such as toss and turn of human body which can extend the period of careless watch. As a basic study to minimize the false reset signals, this paper proposes a simple configuration of BNWAS, which consists of only three motion sensors associated with ‘AND’ and ‘OR’ logic gates. Additionally, several considerations are also proposed for the implementation of motion sensors. This study found that the proposed configuration which consists of three motion sensors is better than an existing one by reducing false reset signals caused by a slight movement of human body in one’s sleep. The proposed configuration in this paper filters false reset signals and is simple to be implemented on existing vessels. In addition, it can be easily installed just by a basic electrical knowledge.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼