RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Advances from Conventional to Modern Plant Breeding Methodologies

        Sashi Lamichhane,Sapana Thapa 한국육종학회 2022 Plant Breeding and Biotechnology Vol.10 No.1

        First initiation of breeding started thousands of years ago when human practiced selection based in visually appealing traits. Further, domestication of wild plants eased adaptation of plant breeding. With increase in population the demand for food also increased which resulted in development of various breeding methodologies. Conventional breeding is a selective breeding methodology where crops are selected based on superior performances. Pure-line selections, mass selection, back cross breeding, recurrent selection, hybridization were most famous traditional breeding methods. It is a longer breeding method and is over-dependent on phenotype of plants. However, phenotypes of a plant are affected by various externalities. So, selection based on phenotypic expression is not accurate. As a result, breeder started integrating various branches of biology in plant breeding and developed modern breeding practices. After Mendelian theory and identification of DNA and RNA, plant breeding diverted to molecular era. People started breeding based on less environmentally susceptible parameters like genotypes, visual and genetic markers, image analysis and loci mapping. Some of the most common modern breeding practices include genomic selection, markers assisted breeding, high throughput phenotyping and CRISPR-Cas9. Despite these, plant breeding has fired up the problems of gene erosion due to loss of local landraces and wild-type plants.

      • 천연기념물 무인도서(칠발도, 사수도, 난도, 홍도)의 번식실태에 관한 연구

        강정훈(Jeong-Hoon Kang),강태한(Tae-Han Kang),유승화(Seung-Hwa Yoo),조해진(Hae-Jin Cho),이시완(Si-Wan Lee),김인규(In-Kyu Kim) 한국조류학회II 2008 한국조류학회지 Vol.15 No.2

        2008년 5월부터 2008년 10월까지 천연기념물 무인도서 번식지로 지정된 칠발도, 사수도, 난도, 홍도에 대하여 번식조류의 현황과 실태를 조사하였다. 조사결과 칠발도는 바다제비(Oceanodroma monorhis), 슴새(Calonectris leucomelas), 칼새(Apus pacificus) 등 3종이 번식하였으며, 번식 수는 바다제비 20,715.8±5,918.8 (mean±SD)쌍, 슴새는 10쌍, 칼새는 250개체로 나타났다. 사수도는 슴새와 흑비둘기(Columba janthina) 등 2종이 번식하였으며, 번식 수는 슴새 4,052.8±4,377.4쌍, 흑비둘기 70개체로 나타났다. 난도에서는 괭이갈매기(Larus crassirostris) 1종이 번식하였으며, 번식 수는 14,376.4±4,950.8쌍으로 나타났다. 홍도 역시 괭이갈매기 1종이 번식하였으며, 번식 수는 32,071.9±10,428.3쌍으로 나타났다. 과거와 번식규모의 변화를 보면 칠발도는 큰 변화가 없는 것으로 나타났으며, 사수도는 번식밀도의 경우 전반적으로 감소한 것으로 나타났다. 난도의 경우 큰 변화가 없었으나 홍도의 경우 과거에 비해 3배 이상이 증가하여 번식지 과밀 현상이 나타나고 있었다. 각 섬의 보호 및 관리방안으로 칠발도는 쇠무릎(Achyranthes japonica)에 대한 관리가 필요하였으며, 사수도는 집쥐(Rattus norvegicus)의 구제와 번식밀도가 높은 나대지의 보호가 필요한 것으로 나타났다. 난도와 홍도의 경우 과도한 사람의 출입에 대한 관리가 필요하였으며, 홍도는 집쥐에 대한 구제가 요구되었다. 향후 천연기념물 무인도서 번식지의 지속적인 보호 및 관리를 위해서는 현황 및 번식실태에 대한 주기적이며 지속적인 모니터링이 필요할 것으로 판단된다. From May to October 2008, the investigation was made on the current status of the breeding birds on Chilbaldo, Sasudo, Nando and Hongdo designated as the Natural Monument Islet in Korea. In Chilbado, it was found three species of breeding birds, including Swinhoe's Storm Petrel Oceanodroma monorhis, Streaked Shearwater Calonectris leucomelas and White-romped Swift Apus pacificus. Its breeding numbers are 20,715.8±5,918.8 (mean±SD) pairs of Swinhoe's Storm Petrel, 10 pairs of Streaked Shearwater, and 250 pairs of White-rumped Swift. In Sasudo, it was found two species of breeding birds, including Streaked Shearwater and Japanese Wood Pigeon. Its breeding numbers are 4,052.8±4,377.4 pairs of Streaked Shearwaters and 70 individuals of Japanese Wood Pigeon Columba janthina. In Nando, it was found one species of breeding bird, named the Black-tailed Gull Larus crassirostris. Its breeding numbers are 14,376.4±4,950.8 pairs. In Hongdo, it was also found one species of Black-tailed Gull. Its breeding numbers are 32,071.9±10,428.3 pairs. From the past changes in breeding scale, Chilbado has shown not so much changes, while Sasudo shown the entire reduction in terms of density of breeding. In the meantime, Nando has also shown no great changes, but Hongdo shown the sign of overcrowded breeding site, increasing more than by 3 times compared to the past. As for the protection and management of each islets, it requires the extermination and management for Japonica Achyranthes japonica in Chilbado, while it requires the exterminate for Norway Rat Rattus norvegicus and the protection of bare soil where the density of breeding is high in Sasudo. In case of Nando and Hongdo, it is necessary to control or restrict excessive access of people to those areas to some degree. And the exterminate for Norway Rat is required for Hongdo. For the purpose of continuous protection and management of Natural Monument Islets as breeding sites in the future, it would be needed to conduct periodic and continuous monitoring of their current status and breeding trends.

      • Breeding Capacity Enhancement for Rice Breeders and Breeding Assistants of National Research Institutes in KAFACI Member Countries

        Lee Jeongran,Lee Keunpyo,Kang Kyung-Ho,Oh Jeong Ho,Mamadou Sock,Baboucarr Manneh,Lee Sang Bok 한국국제농업개발학회 2022 한국국제농업개발학회 학술대회 Vol.2022 No.09

        Sustainable capacity building of the rice value chain in Africa is essential in achieving the rice self-sufficiency and poverty alleviation. The breeding capacity enhancement has also been at the heart of AfricaRice’s mandate. Therefore, the Korea-Africa Food and Agriculture Cooperation Initiative (KAFACI) has concentrated breeding capacity enhancement for young breeders or breeding technicians of national research institutes in the KAFACI member countries. Four-month trainings have been conducted at the Regional Training Center located in Saint Louis, Senegal. The actual practice training is as follows; First is to learn practical skills and techniques of key aspects of rice breeding which are field preparation and layout, sowing, transplanting, fertilizer application, weed control, water management, hybridization/crossing, selection, yield and yield components determination, and rice palatability testing. Second is to learn some theoretical aspects of plant breeding through lectures including basic principles of breeding, evaluation for biotic and abiotic stresses, and statistical analysis. Third is to learn about the accurate use of field and lab equipment for rice breeding. Forth is to learn about proper scientific reporting and presentation. The courses were organized twice per year following two rice cultivation seasons in Senegal. From 2019, a total of 24 trainees participated in the 4 month courses. We believe they have acquired the basic knowledge and skills to implement rice breeding activities indpendently in their countries.

      • KCI우수등재

        Flock composition, breeding strategies and farmers’ traits of interest evaluation of Wollo highland sheep and their F<sub>1</sub> crosses

        ( Tadesse Amare ),( Gebeyehu Goshu ),( Berhan Tamir ) 한국축산학회(구 한국동물자원과학회) 2018 한국축산학회지 Vol.60 No.5

        Background: Sheep production is a major component of the livestock sector in Ethiopia. The country owing to the large population of 30.70 million estimated numbers of sheep in the country and out of which about 72.14% are females, and 27.86% are males with diverse genetic resources. The real value of indigenous breeds was often under-estimated mostly due to their poor appearance and relatively low productivity. Developing countries in most cases opt for exotic breeds to increase animal productivity through crossbreeding or breed substitution without properly investigating the production potential of the indigenous breeds. The main objective of the research was to identify sheep flock composition and structure, farmers’ traits of interest and breeding objective of Wollo highland sheep, and their F<sub>1</sub> crossbreed progenies. Results: Smallholder farmers’ flock synthesized from breeding ewes, breeding rams, pre-weaned ewe lambs, pre-weaned ram lambs, unproductive ewes, castrated and fattened rams, with the percentage coverage of 29.2, 13.3, 15.5, 16.5, 12.4, and 12.5%, respectively. The maximum number of flock size was 289.0 sheep per flock and higher in the third stratum. The off-take rate percentage of the three strata presented as 21.9% in 1st stratum, 12% in the 2nd stratum, and 16.4% in the 3rd stratum and higher off-take rate recorded in the first stratum. Sheep producer’s traits of interest ranked by growth rate (first), body size (second) and marketing value was third rank. Communal breeding (random mating), village based controlled breeding, mixed type and private ram controlled breeding practice were comprised of 39.7, 61.7, 52 and 71.3%, respectively. The percentages of ewes per flock composition were presented as 36.5, 27.1 and 25.5%, respectively in the 3rd stratum, 2nd stratum and 3rd stratum in the order of their importance’s. Conclusion: Genetic improvement practices at smallholder sheep producers situation was showing promising outcome with indigenous Washera F<sub>1</sub> crossbred lambs and which designated for weaning rate, body size, marketing age, age at first lambing, good temperament and large litter size in the order of their rank. The contemporary breeding practice tendency indicated that, reduced flock size to improve flock productivity via crossbreeding practices.

      • KCI등재

        Development of Speed-Breeding System for Korean Soybean Varieties [Glycine max (L.) Merr] Using LED Light Source

        이대웅,한경진,김지홍,전태환,이주석 한국육종학회 2023 Plant Breeding and Biotechnology Vol.11 No.1

        The conventional soybean breeding program by single seed descent method required around 8 to 9 years to develop a cultivar. Through the advancement of breeding techniques, such as marker-assisted selection, required resources could be significantly saved, but the generation advancement step still slows down the entire soybean breeding program time course. In this study, 28 soybean varieties were tested to find the optimal speed breeding conditions for soybeans that could rapidly advance one generation with 2 light sources, 3 light conditions, and 2 planting densities. Plants were kept under short-day conditions (9 hours light/15 hours dark). We optimized the growth conditions for shortening the period of soybean generation progression based on speed breeding. The optimizing conditions are as follows. (1) Irradiation using LED light source for 9 hours, (2) 506 mol/(m2ㆍs) of PPFD at 30 cm from the ground, (3) Planting density of 5 cm × 5 cm, (4) temperature of 25℃ ± 2℃ and (5) humidity of 50% ± 10%. If this condition is used, soybeans can be advanced by one generation within an average of 73 days. It is possible to advance five generations a year using only indoor speed-breeding system. Furthermore, if it includes the development of lines in the field, four generation per year, which is advance three generations using indoor speed-breeding system and one generation in the field, is allowed to increase soybean breeding speed with minimum input.

      • KCI등재

        Development of an Automatic Silkworm Breeding System

        Sang Kwun Jeong,장성욱,Jin kook Son,Seong-Wan Kim 한국잠사학회 2023 International Journal of Industrial Entomology Vol.47 No.2

        This paper is about the development results of an automatic silkworm breeding system to reduce labor and time by automatically performing the works for silkworm droppings changing and feed its food. It consists of an automatic guided vehicle and a processing unit. The automatic guided vehicle transports a silkworm dropping changing frame mounted on a silkworm tray stand, and the processing unit takes over the dropping changing frame on it, removes excrement contained the droppings changing frame and feeds silkworm food. In the case of the current silkworm farming, because the breeding period for large silkworms (4 to 5 stage) is short to 14 days and the supply of mulberry leaves takes 98% of the total amount of mulberry leaves needed for breeding silkworms at this time, labor concentration is intensive, and all breeding works depends on manpower. Therefore, it was difficult to breed large silkworms on a large scale. Moreover, silkworms are bred by adding Silkworm bed (Seop) and mulberry in the silkworm tray, and their droppings changing is to separate silkworms and excrement by moving silkworm trays one by one, and the production cost increases due to the high-cost manpower for silkworm breeding. To solve this problem, technology for automating silkworm breeding has also been developed. However, there is still a limitation that silkworm feeding and droppings changing works are not suitable for mass breeding because a lot of labor and time are spent depending on manual work. Therefore, a new silkworm breeding system for breeding silkworm automatically is needed and so we developed an Automatic Silkworm Breeding System applying the droppings change frame, the inverting unit, the feeding silkworm food device and automatic guided vehicle.

      • KCI등재

        종분포모형을 이용한 참매의 서식지 예측 -충청북도를 대상으로-

        조해진 ( Hae Jin Cho ),김달호 ( Dal Ho Kim ),신만석 ( Man Seok Shin ),강태한 ( Tehan Kang ),이명우 ( Myungwoo Lee ) 한국환경생태학회 2015 한국환경생태학회지 Vol.29 No.3

        본 연구는 국내에서 아직 미흡한 조류 번식지 예측 모형을 이용해 참매의 서식지 예측 및 대체번식지로서 이용가능한 지역을 선정하고, 향후 참매 번식 가능지역을 대상으로 보호관리 지역을 확대할 수 있는 근거를 제시하기 위한 방안이다. 참매의 번식지는 현장조사에서 확인된 둥지(N=10)를 이용하였으며, 출현지점은 제3차자연환경조사를 통해 확인된 참매출현지점(N=23)을 활용해 분석하였다. 모형변수로는 지형인자 4가지, 자연환경인자(식생) 3가지, 거리인자 7가지, 기후변수 9가지를 활용하였다. 활용변수중 Random sampling을 통해 확보된 비출현 좌표와 출현좌표간 비모수 검증을 통해 최종 환경변수를 선정하였다. 유의성 검증을 통해 선택된 변수는 번식지 대상 10가지, 출현지점 대상 7가지였으며, 이 변수를 활용해 최종 서식지 예측 모형(MaxEnt)을 구축하였다. 모델 구축결과 번식에 활용된 각 변수별 모형 기여도는 온도의 계절적 변동, 혼효림과의 거리, 입목밀도, 경급의 순이었으며, 출현지점에 활용된 각 변수별 모형 기여도는 온도의 계절적 변동, 수계와의 거리, 경작지와의 거리, 경사도의 순이었다. 번식지점을 대상으로 한 모델링은 기후환경과 숲 내부에서 번식하는 참매의 특성이 반영된 것으로 판단된다. 예상서 식지는 충청북도 중부 이북지역으로 예상되었으며, 그 면적은 189.5㎢(2.55%)였다. 충북 이남지역은 청주와 충주 등의 비교적 큰 도시가 발달되어 있는 반면 충청북도 북부지역의 경우 산림과 경작지가 고루 발달되어 있어 번식에 있어 일정한 세력권과 먹이원이 필요한 참매로서는 번식에 유리한 지역일 것으로 판단된다. 출현지점 대상으로 한 모델링은 면적이 3,071㎢(41.38%)으로 확인되었으며, 이는 출현지점을 대상으로 하여 단순 이동 관찰 및 계절적인 변동 미고려 등의 한계가 있기 때문에 번식지점을 대상으로 한 모델링보다 광범위한 서식예상지 역을 예측하였다. 결과에서 확인된 예측지점은 번식지를 대상으로 하였을 경우 정밀한 서식예측이 가능하나, 둥지의 특성상 확인되는 지점이 적고, 참매의 행동영역을 반영하지 못하는 단점이 있다. 반면 출현지점을 대상으로 하였을 경우 더 광범위한 지점에 대한 결과 도출이 가능하였으나, 단순 이동이나 지속적인 이용실태를 반영하지 못하기 때문에 정밀도에서는 다소 떨어진다고 할 수 있다. 다만 이러한 결과들을 통해 참매의 서식지를 예측할 수 있으며, 특히 정밀한 번식지역의 예측자료는 환경영향평가나 개발계획 수립시 서식지 모형 결과를 도입하여 반영할 필요성이 있다. This research aims at identifying the goshawk’s possible and replaceable breeding ground by using the MaxEnt prediction model which has so far been insufficiently used in Korea, and providing evidence to expand possible protection areas for the goshawk’s breeding for the future. The field research identified 10 goshawk’s nests, and 23 appearance points confirmed during the 3rd round of environmental research were used for analysis. 4 geomorphic, 3 environmental, 7 distance, and 9 weather factors were used as model variables. The final environmental variables were selected through non-parametric verification between appearance and non-appearance coordinates identified by random sampling. The final predictive model (MaxEnt) was structured using 10 factors related to breeding ground and 7 factors related to appearance area selected by statistics verification. According to the results of the study, the factor that affected breeding point structure model the most was temperature seasonality, followed by distance from mixforest, density-class on the forest map and relief energy. The factor that affected appearance point structure model the most was temperature seasonality, followed by distance from rivers and ponds, distance from agricultural land and gradient. The nature of the goshawk’s breeding environment and habit to breed inside forests were reflected in this modeling that targets breeding points. The northern central area which is about 189.5 ㎢(2.55 %) is expected to be suitable breeding ground. Large cities such as Cheongju and Chungju are located in the southern part of Chungcheongbuk-do whereas the northern part of Chungcheongbuk-do has evenly distributed forests and farmlands, which helps goshawks have a scope of influence and food source to breed. Appearance point modeling predicted an area of 3,071 ㎢(41.38 %) showing a wider ranging habitat than that of the breeding point modeling due to some limitations such as limited moving observation and non-consideration of seasonal changes. When targeting the breeding points, a specific predictive area can be deduced but it is difficult to check the points of nests and it is impossible to reflect the goshawk’s behavioral area. On the other hand, when targeting appearance points, a wider ranging area can be covered but it is less accurate compared to predictive breeding point since simple movements and constant use status are not reflected. However, with these results, the goshawk’s habitat can be predicted with reasonable accuracy. In particular, it is necessary to apply precise predictive breeding area data based on habitat modeling results when enforcing an environmental evaluation or establishing a development plan.

      • KCI등재

        종분포모형을 이용한 참매의 서식지 예측 -충청북도를 대상으로-

        조해진,김달호,신만석,강태한,이명우 한국환경생태학회 2015 한국환경생태학회지 Vol.29 No.3

        본 연구는 국내에서 아직 미흡한 조류 번식지 예측 모형을 이용해 참매의 서식지 예측 및 대체번식지로서 이용 가능한 지역을 선정하고, 향후 참매 번식 가능지역을 대상으로 보호관리 지역을 확대할 수 있는 근거를 제시하기 위한 방안이다. 참매의 번식지는 현장조사에서 확인된 둥지(N=10)를 이용하였으며, 출현지점은 제3차자연환경조사를 통해 확인된 참매출현지점(N=23)을 활용해 분석하였다. 모형변수로는 지형인자 4가지, 자연환경인자(식생) 3가지, 거리인자 7가지, 기후변수 9가지를 활용하였다. 활용변수 중 Random sampling을 통해 확보된 비출현 좌표와 출현좌표간 비모수 검증을 통해 최종 환경변수를 선정하였다. 유의성 검증을 통해 선택된 변수는 번식지 대상 10가지, 출현지점 대상 7가지였으며, 이 변수를 활용해 최종 서식지 예측 모형(MaxEnt)을 구축하였다. 모델 구축결과 번식에 활용된 각 변수별 모형 기여도는 온도의 계절적 변동, 혼효림과의 거리, 입목밀도, 경급의 순이었으며, 출현지점에 활용된 각 변수별 모형 기여도는 온도의 계절적 변동, 수계와의 거리, 경작지와의 거리, 경사도의 순이었다. 번식지점을 대상으로 한 모델링은 기후환경과 숲 내부에서 번식하는 참매의 특성이 반영된 것으로 판단된다. 예상서식지는 충청북도 중부 이북지역으로 예상되었으며, 그 면적은 189.5㎢(2.55%)였다. 충북 이남지역은 청주와 충주 등의 비교적 큰 도시가 발달되어 있는 반면 충청북도 북부지역의 경우 산림과 경작지가 고루 발달되어 있어 번식에 있어 일정한 세력권과 먹이원이 필요한 참매로서는 번식에 유리한 지역일 것으로 판단된다. 출현지점 대상으로 한 모델링은 면적이 3,071㎢(41.38%)으로 확인되었으며, 이는 출현지점을 대상으로 하여 단순 이동 관찰 및 계절적인 변동 미고려 등의 한계가 있기 때문에 번식지점을 대상으로 한 모델링보다 광범위한 서식예상지역을 예측하였다. 결과에서 확인된 예측지점은 번식지를 대상으로 하였을 경우 정밀한 서식예측이 가능하나, 둥지의 특성상 확인되는 지점이 적고, 참매의 행동영역을 반영하지 못하는 단점이 있다. 반면 출현지점을 대상으로 하였을 경우 더 광범위한 지점에 대한 결과 도출이 가능하였으나, 단순 이동이나 지속적인 이용실태를 반영하지 못하기 때문에 정밀도에서는 다소 떨어진다고 할 수 있다. 다만 이러한 결과들을 통해 참매의 서식지를 예측할 수 있으며, 특히 정밀한 번식지역의 예측자료는 환경영향평가나 개발계획 수립시 서식지 모형 결과를 도입하여 반영할 필요성이 있다. This research aims at identifying the goshawk’s possible and replaceable breeding ground by using the MaxEnt prediction model which has so far been insufficiently used in Korea, and providing evidence to expand possible protection areas for the goshawk’s breeding for the future. The field research identified 10 goshawk’s nests, and 23 appearance points confirmed during the 3rd round of environmental research were used for analysis. 4 geomorphic, 3 environmental, 7 distance, and 9 weather factors were used as model variables. The final environmental variables were selected through non-parametric verification between appearance and non-appearance coordinates identified by random sampling. The final predictive model (MaxEnt) was structured using 10 factors related to breeding ground and 7 factors related to appearance area selected by statistics verification. According to the results of the study, the factor that affected breeding point structure model the most was temperature seasonality, followed by distance from mixforest, density-class on the forest map and relief energy. The factor that affected appearance point structure model the most was temperature seasonality, followed by distance from rivers and ponds, distance from agricultural land and gradient. The nature of the goshawk’s breeding environment and habit to breed inside forests were reflected in this modeling that targets breeding points. The northern central area which is about 189.5 ㎢(2.55 %) is expected to be suitable breeding ground. Large cities such as Cheongju and Chungju are located in the southern part of Chungcheongbuk-do whereas the northern part of Chungcheongbuk-do has evenly distributed forests and farmlands, which helps goshawks have a scope of influence and food source to breed. Appearance point modeling predicted an area of 3,071 ㎢(41.38 %) showing a wider ranging habitat than that of the breeding point modeling due to some limitations such as limited moving observation and non-consideration of seasonal changes. When targeting the breeding points, a specific predictive area can be deduced but it is difficult to check the points of nests and it is impossible to reflect the goshawk’s behavioral area. On the other hand, when targeting appearance points, a wider ranging area can be covered but it is less accurate compared to predictive breeding point since simple movements and constant use status are not reflected. However, with these results, the goshawk’s habitat can be predicted with reasonable accuracy. In particular, it is necessary to apply precise predictive breeding area data based on habitat modeling results when enforcing an environmental evaluation or establishing a development plan.

      • KCI등재

        유전 및 육종 : 가축 유전체정보 활용 종축 유전능력 평가 연구 -표지인자 효과 추정 모의실험

        이득환 ( Deuk Hwan Lee ),조충일 ( Chung Il Cho ) 한국동물자원과학회(구 한국축산학회) 2011 한국축산학회지 Vol.53 No.1

        본 연구는 유전체분석에 대해 모의실험한 연구로써 Reference Population(RP)이 구성되었을 때, 표현형 자료가 없고 유전체자료만 있는 Juven1 또는 Juven2 세대에 대해 유전평가의 정확도에 대해 알아보고자 연구를 실시하였다. 모의실험의 가정으로 염색체는 1개이며 염색체길이는 100cM로 가정하였다. 초기의 유효집단의 수는 100두의 다형성이 없는 초기집단에서 유전자 효과가 없는 표지인자(Marker)를 0.1cM 및 0.5cM 간격으로 균등하게 단일 염기 돌연변이에 의한 다형성을 발생시켰고 유전자 효과가 있는 QTL 좌위는 Marker와 동수의 비율로 임의위치를 지정하여 돌연변이에 의한 변이성을 생성하였으며 이때 유전자 효과는 Gamma 분포함수(scale=1.66, shape=0.4)에서 생성하였다. 배우자(gamete) 형성과정에서 Haldane의 가정하에 유전자 재조합을 생성하였으며 돌연변이 발생율은 Marker 및 QTL 좌위에서 2.5×10(-3) 및 2.5×10(-5)의 확률로 발생시켜 1000세대까지 세대번식을 유지하였다. 이 후 1001세대부터 1004세대까지 세대당 2000두의 자손을 생성하였으며 이 때 유전력을 0.1 및 0.5의 가정하에 1001~1002세대에서 표현형 자료를 생성하였고, 1003~1004세대는 오직 유전체자료만 생성하였다. Bayesian 방법을 이용하여 개체별 육종가를 추정하였으며 표지인자간 거리(0.1cM, 0.5cM), 유전력(0.1, 0.5) 및 반형매 집단크기(20두, 4두)에 따라 참육종가와 추정 육종가간의 상관으로 표현되는 육종가 정확도에 대해 비교한 결과 1003세대에서 표지인자간 거리가 0.1cM 및 0.5cM일 때 육종가의 정확도는 각각 0.87, 0.81였고, 유전력이 0.1 및 0.5 일 때 각각 0.87, 0.94로 추정되었으며, 반형매 집단의 크기가 20두 일 때 0.87, 4두 일 때 0.84로 추정되었다. 위의 결과로 미루어 보아 다량의 SNP 표지정보 및 반형매 집단의 크기가 클수록 즉, 혈연계수가 높은 집단일 때 육종가의 정확도는 높게 나타났다. 유전체선발의 활용시 비교적 높은 정확도로써 조기선발이 가능하며 이로 인한 세대간격을 단축시킬 수 있어 개량의 효율을 높일 수 있을 것으로 사료된다. 반면에 유전체선발은 분석비용이 비싸며, 지속적인 유전체 선발시 특정유전자 선호로 인한 유전적 부동(Genetic Drift) 현상이 발생될 수 있기 때문에 지속적인 SNP 발굴에 대한 노력이 필요한(Meuwissen 2003) 단점이 있으나 한우 또는 젖소와 같은 대가축과 같이 세대간격이 긴 가축에서 유전체선발 할 경우 조기선발로 인한 세대간격 단축과 유전평가의 높은 정확도(0.8이상)로 인해 개량의 효율을 극대화 할 수 있을 것으로 사료된다. This simulation study was performed to investigate the accuracy of the estimated breeding value by using genomic information (GEBV) by way of Bayesian framework. Genomic information by way of single nucleotide polymorphism(SNP) from a chromosome with length of 100cM were simulated with different marker distance(0.1cM, 0.5cM), heritabilities(0.1, 0.5) and half sibs families(20 heads, 4 heads). For generating the simulated population in which animals were inferred to genomic polymorphism, we assumed that the number of quantitative trait loci(QTL) were equal with the number of no effect markers. The positions of markers and QTLs were located with even and scatter distances, respectively. The accuracies of estimated breeding values by way of indicating correlations between true and estimated breeding values were compared on several cases of marker distances, heritabilities and family sizes. The accuracies of breeding values on animals only having genomic information were 0.87 and 0.81 in marker distances of 0.1cM and 0.5cM, respectively. These accuracies were shown to be influenced by heritabilities (0.87 at h2=0.10, 0.94 at h2=0.50). According to half sibs`` family size, these accuracies were 0.87 and 0.84 in family size of 20 and 4, respectively. As half sibs family size is high, accuracy of breeding appeared high. Based on the results of this study it is concluded that the amount of marker information, heritability and family size would influence the accuracy of the estimated breeding values in genomic selection methodology for animal breeding.

      • KCI등재

        한국 돌연변이육종 연구의 역사와 주요 성과 및 전망

        강시용(Si-Yong Kang),김상훈(Sang Hoon Kim),류재혁(Jaihyunk Ryu),김진백(Jin-Baek Kim) 한국육종학회 2020 한국육종학회지 Vol.52 No.S

        Research on mutation breeding started in the early 1960s by researchers at the Atomic Energy Research Institute, Rural Development Administration (RDA) and several universities in Korea. The Radiation Agriculture Research Institute (RARI) was established in 1966, and studies of mutation breeding using radiation were actively conducted for a while. RARI was merged into the Korea Atomic Energy Research Institute (KAERI) and RDA in 1973, and radiation breeding research was neglected by the two agencies. In the 1980s, the relevant research department was lost, which resulted in a recession period of radiation breeding research. The Advanced Radiation Research Institute (ARTI), under the KAERI, was established to promote radiation research and the industry in 2005, which led to the activation of radiation breeding research. Then, the Radiation Breeding Research Center (RBRC) at the ARTI was established with support of the Ministry of Agriculture, Food and Rural Affairs in 2013. Recently, the importance of seed and genetic resources has been emphasized in Korea, and many institutes, companies and private breeders are interested in mutation breeding. The RBRC is trying to develop advanced radiation breeding techniques and new genetic resources using mutation techniques combined with bio-tech. This is to deal with the loss of biodiversity due to global climate change and environmental degradation, growing global demand for food and bio-energy, and to strengthen the protection for new plant varieties. Approximately 180 new mutant varieties were developed and registered officially in Korea. Recently, new mutant varieties, especially of flowers and ornamental plants, have quickly increased and are being commercialized, mainly by private company and breeders.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼