RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Surfactant PVA-Stabilized Co–Mo Nanocatalyst Supported by Graphene Oxide Sheets Toward the Hydrolytic Dehydrogenation of Ammonia Borane

        Xin Zhao,Dandan Ke,Shumin Han,Yuan Li,Hongming Zhang,Ying Cai 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.14 No.11

        By adding surfactant polyvinyl alcohol (PVA) and controlling the preparation process, we successfully synthesized Co–Mo catalysts. For further improving the dispersion, reduced graphene oxide sheets as catalyst carrier were introduced to synthesize Co–Mo@rGO composite catalyst as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. The introduction of Mo for preparing Co–Mo@rGO catalyst helped to form alloy catalyst with better structure, better dispersity and smaller particle size. When the molar ratio of Co and Mo was 0.75 : 0.25, the bimetallic composite catalyst exhibited superior activity with TOF value of 16.29 mol H2 · min -1 · mol Co-Mo -1. The activation energy of the reaction was calculated to be 43.72 kJ · mol -1. Furthermore, the reusability tests reveal that waxberry-like Co–Mo still show good catalytic activity with 80.3 % of their initial activity in five successive runs. The enhanced catalytic activities were due to the synergistic interaction between graphene sheets and waxberry-like Co–Mo NPs, which was beneficial to improve the dispersion and stability of bimetallic NPs. Also, ligand effects on the formation of waxberry-like structure and amorphous state further promoted the catalytic activity.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼